

 Paul's Post-scarcity Perambulations

 Thunderbird Server as a Way Forward for Mozilla -- ThunderbirdS Are Grow! Manifesto

Update 2015-12-10: Kent James suggested I look at the tb-planning email list when I made a post about this proposal to the Thunderbird blog:

https://blog.mozilla.org/thunderbird/2015/12/thunderbird-active-daily-inquiries-surpass-10-million/#comment-986

Looking there, I've found a previous suggestion from about three months ago (also by Kent), called:

"Future Planning: Thunderbird as a Web App"

https://mail.mozilla.org/pipermail/tb-planning/2015-September/004066.html

So, great minds think alike. :-) I plan on posting this proposal there too as Kent suggested.
It covers some extra ground beyond that discussion.

This is in response to a thread on Mozilla Governance called:

"Thunderbird, the future, mozilla-central and comm-central"

https://groups.google.com/forum/#!topic/mozilla.governance/kAyVlhfEcXg

On Tuesday, December 1, 2015 at 7:47:58 AM UTC-5, Andrew Sutherland wrote:

> The problem with Thunderbird is not that it is a mail user agent or
> that user agency in messaging is unimportant. The problem is that
> Thunderbird has had a serious technical debt problem since the day
> its code-base transitioned from Netscape. Its low-level integration
> with Gecko has been a maintenance burden for Thunderbird developers
> and non-Thunderbird developers alike.

To deal with Thunderbird's technical debt (which Andrew Sutherland described on the Mozilla Governance thread that Mitchell Baker started),
I propose Mozilla fund a "skunkworks" team
of about seven people for a year to create a new server version of
Thunderbird (called "Thunderbird Server", or "ThunderbirdS" for short)
that runs initially as a locally-installed Node.js app providing a single-page
JavaScript/TypeScript/Mithril/D3 webapp for email handling and other peer-to-peer
communications using the local file system. Thunderbird Server would use
Firefox (desktop or mobile) as its primary client; Firefox would access Thunderbird Server
just like any other (local) web server using web standards. The most
significant Thunderbird Desktop plugins (based on downloads or other
metrics) would be ported by the team to this new Thunderbird Server
platform (ideally, aided by a custom tool for such porting).
Some of the most popular plugins might be unneeded though for Thunderbird Server given they could run directly in Firefox (like translation tools and ad blockers).
This Thunderbird Server platform would, through plugins, eventually become a social semantic desktop
that could change the nature of the web as we know it,
reducing the significance of the distinction between local copies shared with peers and centralized content shared with clients.

This is a feasible way to deal with the technical debt in Thunderbird and move Thunderbird
to Mozilla-promoted web technologies while still being true to the idea of distributed
data and peer-to-peer communications which is the soul of Thunderbird.
Sadly, Thunderbird Desktop itself would then probably be left to eventual
technical bankruptcy (or self-serve fixes) once the Thunderbird Server version proved stable
and popular and the migration path was clear
and easy (unless others wanted to maintain Thunderbird Desktop in the absence of Mozilla's ongoing financial support).
If Thunderbird Server was not a clear improvement over Thunderbird Desktop
for almost all Thunderbird users all things considered, making them want to switch to it, the project could be deemed a failure though.
However, even in such a case, Firefox itself might benefit a lot from this effort via indirect means
as it grew to meet new challenges posed by an expanding Thunderbird Server platform;
Node.js would also benefit with improved email handling libraries usable by many web applications.

I'd be happy to
either help lead such a Thunderbird Server project myself or just help
out with it full-time under another developer's leadership. I just
applied as a "Mozilla Growth Engineer" suggesting something in this
direction. Below is a manifesto about this idea with more detail on such
a plan and a lot more reasons as to why Mozilla should fund this effort.
But in short, the big issue here is, as Andrew points out, not messaging.
The deeper issues is local data and peer-to-peer communications versus
central data and client-to-shared-server communications --
and related privacy, security, and reliability concerns.

Mark Surman said the Mozilla Foundation offered a modest amount of money to pay for contractors
to help develop options for the technical future of Thunderbird.
In a couple of months, building on the same infrastructure of a complex FOSS webapp I've already written called NarraFirma,
I'm confident I could produce a proof of concept of this Thunderbird Server idea even just working by myself --
but it would be better to do it as part of a team.

And we all know, as Mark Surman suggested, that "Open Source is the Answer to Giving". :-)

http://news.slashdot.org/story/08/04/20/1313223/is-open-source-the-answer-to-giving

http://www.pdfernhout.net/open-letter-to-grantmakers-and-donors-on-copyright-policy.html

A Thunderbird Server could instead become a Kickstarter/Indiegogo
campaign or such, but, even ignoring "Thunderbird" trademark problems
with such a campaign, it would no doubt be best if Mozilla itself got
behind such a manifesto -- best both for the Thunderbird project itself *and* also
for Firefox's own future, for reasons explained below.

Redistribution of this manifesto under CC-BY-SA is encouraged. People
should feel free to improve it or rewrite it or reduce some redundancy
in it. In that sense, it's more of a first draft.

--Paul Fernhout (pdfernhout@kurtz-fernhout.com)

The "ThunderbirdS are Grow!" Manifesto

Web technologies are important, and Mozilla is doing amazing stuff to
improve web standards via FireFox. Mozilla also is doing great work with
the Webmaker movement to help more people to understand web
technologies. And as Douglas Turner wrote: "I want people to be able to
build products like Thunderbird and BlueGriffon directly on the web.
This is where we're heading." That is a great vision and I agree we are
going there. However, such web technologies like HTML, CSS, JavaScript,
and the DOM are almost orthogonal to the real issue here. That deeper
issue is about centralized data vs. localized data and also about
client-to-shared-server transactions vs. peer-to-peer transactions.
Mozilla seems be ready to discard its support for distributed private
data which is transferred from peer to peer (as via email) --
decentralized data which was used day-by-day to build the web and still
is! That is a bit like someone sawing off their legs because they want
to "focus" on just using their arms now that they have gotten somewhere
they want to be at the moment. :-(

 Firefox and web standards does not care much about local data

For example, here is a Firefox issue I filed a year and a half ago, and
is still unfixed, related to IndexedDB. I discovered it while trying to
write a JavaScript IDE that ran purely within Firefox. Essentially,
almost nobody cares about it, even to disagree whether it should be fixed.

"IndexedDB same-origin policy implementation for local files with query
string"

https://bugzilla.mozilla.org/show_bug.cgi?id=1005634

As I eventually wrote there in a bit of frustration a couple months ago:

"In general, and given that this (in my opinion) bug has been sitting
around for so long (both on the user side and on the Mozilla side), it
seems to me this situation relates in part to changing cultural
expectations on the use of a web browser. For me, I increasingly see the
web browser with JavaScript as a new non-proprietary well-supported
cross-platform technology to deliver applications of all sorts for the
desktop, mobile, and embedded (a bit like the proprietary VisualWorks
Smalltalk could do in the 1980s way before Java). I can think that even
if at the same time I feel we should have better standards for
exchanging information in structured ways. To me, the app part of that
means a web browser should fully support running applications from local
files including all functionality -- but in a "sandbox" with
fine-grained security permissions (something any OS should ideally be
supporting from the ground up for all apps and subapps, but that's
another story). Full functionality could include support for
peer-to-peer web browser interactions without the need for a central
server (like WebRTC moves towards). However, I get the feeling most
people using web browsers (including likely many at Mozilla) still see a
web browser as something always connecting to servers which host web
pages. Even Mozilla's Webmaker movement focuses on using a server to
make content, not to edit local files. To make things worse, web site
creators have adopted approaches involving loading code from many sites
just to make basic functionality work (which is also in part based on a
third-party-advertising-based revenue model). So, thinking through this
sort of security issues related to running code from local files is
presumably not a priority or seems just to big an issue to wrestle with.
So, it is easier to just deny all access as much as possible when
loading from files (as a choice between security and convenience, as
opposed to devoting substantial resources to innovation to deliver both
security and convenience). In many ways the entire web browser security
model (including with per-origin cookies) was unfortunately just not
well thought through from the start. As Jeremiah Grossman suggests, "...
Web Security is Fundamentally Broken". Opening files saved from the web
in FireFox pushes on pain points from a fundamentally broken web
security model. ... [A possible resolution] might even end up with
local pages being served from some internal webserver in FireFox and
other browsers as some sort of new "local web server for browsers" standard? ... Until then,
it seems the most predictable behavior results
from running apps from local servers (like say NodeJS wrapped into a
desktop application), which at least then just creates the usual
security and user expectation issues and not extra ones and additional
confusion from loading directly from files. It's a sad situation though.
..."

You know where the code I wrote on Firefox actually works as I might
expect? Chrome. :-(

So, as I know from personal experience (and don't get me started on
Mozilla's WebSQL decision), Firefox does not seem to really prioritize
making it easy for developers to store local data in the web browser in
a generally usable way -- or to load fully useable web pages that are
stored in local files. Yes there are good reasons for most of of
Firefox's security and standards decisions -- but having good
theoretical reasons doesn't matter if the end result is still unusable
in practice. :-(
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers

But, it is not just Mozilla's choices here. As Daniel Glazman wrote: "The dismissal of the File API a while
ago is one of the crucial holes in the platform."

 Node.js to the International Rescue

But as R Kent James points out: "This is in the context of a Firefox
that is under enormous pressure to re-establish themselves as a market-
and mind- share leader. They could have decided to do that by stressing
the flexibility of the Mozilla platform, and encouraging third-party
applications, and complex addons. Apparently though they have not chosen
that path."

Instead, rather than abandon Firefox which I've used almost since the
first version, I've resorted to hosting stuff in Node.js as a local
server so Firefox can then access it without unexpected issues -- even
as that makes software less easy to install for any other users. It was
sad to give up on expecting Firefox would be robustly supportive of
storing and indexing data locally (even though you can do it within
excessively tight restrictions, or in that browser-based IDE's case, if
I use a hash instead of a query string to launch applications, and thus
break internal page navigation). I understand how Firefox might reflect
a certain central-server-based vision of Mozilla that seems to have
crept into the organization without anyone noticing, and I can work
around it with a local server, but it is still sad to me.

This other point by R Kent James really resonated with me though: "But
beyond that, many of us are loyal Mozillians who are not excited about
being driven to things like NodeJS to get any real work done. Today's
inconveniences like Thunderbird could be tomorrow's web innovation. Just
look how AJAX and XHR originally arose as attempts to make better email
clients in GMail and Outlook. Yet we are pushed away and isolated, so
that Firefox can "Go Fast"."

And that is, sadly, just what I did -- turned to Node.js.

 Thunderbird is about storing data locally and sharing peer-to-peer

Thunderbird by contrast to Firefox is all about storing data locally and
sharing that data in a peer-to-peer way via email servers. That is why I
have used Thunderbird as well almost since it initial release.

Still, there are web email systems (and I even use one sometimes on my
email relay server as I leave messages there a couple of days in case my
local system crashes). So, I have to agree with Andrew that the issue is
not about messaging by itself. There are also plenty of web bulletin
boards run by whoever (even Mozilla). The cultural divide goes deeper
than messaging. A focus on messaging may just be a red herring, since
every web request is essentially a messaging transaction, or could be
thought of as one. The web is all about messaging in that sense.

The cultural divide is really more about locally-stored data and
peer-to-peer versus centrally-stored data and client-to-shared-server. And
that is why some people (like me) are so strongly upset by what Mozilla
seems to be saying about abandoning Thunderbird. Even if Mozilla spins
off Thunderbird with a good severance package, that act comes across as
Mozilla abandoning locality and peer-to-peer and so also abandoning the
reliability/security and privacy that locality and peer-to-peer can in
theory provide. Sure Mozilla talks a lot about privacy and security, and
within a web context Firefox does a good job about that in practice --
but web-related privacy and security is only part of the whole privacy
and security landscape. Thunderbird covers another big part of the
privacy and security landscape that depends on locality and peer-to-peer.

 Is a C++ Thunderbird Desktop obsolete -- yes!!! But its localish peering essence is not!

Are Andrew and others posting in this thread right about Thunderbird
essentially being technically and even organizationally obsolete? Yes.
We have much better tools than C++ for most coding tasks now -- tools
like JavaScript/TypeScript that are less prone to buffer overruns and
deallocation errors and so forth. Tools that most web developers
actually know how to use reasonably correctly or can be motivated to
learn about, in a way they never will with C++. Tools that have a vastly
larger potentially pool of contributing developers (even as I'm the
first to say JavaScript has a lot of warts). Tools that Mozilla is
pushing via the Webmaker movement and most of its other end-user
training materials. And the whole idea of Mozilla maintaining a separate
parallel rendering and UX stack in Thunderbird at this point is
increasingly problematical organizationally as Mozilla moves on to new
technologies for Firefox. That all is true. Sad, but true.

I taught C/C++ about 25 years ago to biology majors near the beginning of my career -- I'm a graybeard if you could not tell by my love of distributed email systems. :-)
However, I avoid C++ now myself whenever possible.
I have next-to-zero natural interest in looking under the hood
of any application written in C++ by dozens of developers for over a
decade with another GUI layer like XUL thrown on top of it
(even if a small well-written C++ program can be a joy to behold).
I recently spent 2.5 years doing exactly that sort of thing, contracting
for NBCUniversal with their huge fifteen-year-old messaging-based broadcast automation software
(translating C++/Tcl to Java, while helping to maintain both)
and that C++/Tcl part of the job was not that much fun, even though the C++/Tcl code was on the whole well-written and worked well. :-)

So yes, at this point, the current C++/XUL Thunderbird implementation will eventually die, just like a Tulip plant
shrivels up after it has bloomed. Hardly anybody new is really going to *want*
to maintain a huge collage of someone else's C++/XUL code voluntarily.
No doubt Mozilla could find people to hire to do
a good job anyway, like I was hired for that NBCUniversal project -- but having
people *want* to play with the code under the hood is an important part of any open source project.
There is nothing wrong with C++ in various applications -- it's just generally not a great choice for complex applications
where you want to emphasize flexibility, reliability, and approachability over speed, low-level interfacing, and memory footprint.
And of course, XUL is on its way out entirely to be replaced by plain JavaScript and the regular DOM.
Mozilla is just not encouraging people to be C++ (or XUL) developers -- it is encouraging people to become good JavaScript/HTML/CSS/DOM programmers.
But like a Tulip plant with a still-living
bulb underground, the local-storage peer-to-peer email-ish essence of
Thunderbird, if nurtured well, can still grow again in a year's time and
we could have something beautiful -- something even better than last
year's plant. Something that could even make Firefox itself better as
they co-evolve together. We could have Thunderbird Server,
a local webserver that can organize all your messages
and do lots of other stuff via plugins including keep a local copy of the web if you want,
a local server that you quickly wonder how you lived without for so long. :-)

While I say above Mozilla promotes JavaScript, I would not start such a big project in JavaScript though compared to TypeScript.
I learned that lesson on NarraFirma, as once the NarraFirma application passed about 100 JavaScript modules,
it became harder and harder to refactor in pure JavaScript until I finally changed the project over to TypeScript.
Another reason to choose TypeScript is ironically that it is actually easier for someone to learn JavaScript
when using TypeScript because of better autocompletion in IDEs and less minor frustrations from JavaScript warts.
Is TypeScript my favorite language? No. I prefer Smalltalk or even Java
(ignoring other practical issues like libraries or installation or existing developer base and so on).
To me, JavaScript/TypeScript is like a somewhat harder-to-read-and-debug version of Smalltalk but with other redeeming practical qualities.
TypeScript is just a better JavaScript.
TypeScript does need a build step (which IDEs can make transparent in many cases) -- but most big JavaScript projects (and even many little ones) end up with a build step.
TypeScript can make debugging a bit more difficult in terms of line numbers not quite matching up unless you use source maps (which are their own problem on a big project).
Wrapping existing JavaScript libraries with type definitions can be a very small nuisance sometimes.
Still, other than those sorts of issues, I have seen nothing but benefits from using TypeScript instead of JavaScript.
Dealing with those sorts of issues is like 1% of my time when developing in TypeScript.
With TypeScript, I can spend hours at a time confidently coding and refactoring (as I could in Java),
whereas in JavaScript I often had to keep running the code every five or ten minutes to check if it still worked
or if there was some silly error somewhere JSHint could not tell me about.
In theory more automated testing might help with the need to run JavaScript code often, of course,
but unit tests don't provide any direct help when trying to do complex refactorings on big applications, whereas TypeScript does help with such refactoring.

And while something like Mozilla Rust may well be an excellent
system-level programming language, it is probably too far from JavaScript to be worth considering for Thunderbird Server
if part of the goal here is to get even more people programming in JavaScript, given a hope that Thunderbird Server
becomes *the* application everyone runs locally and tinkers with to store most (or even all) of their local data while integrating that local data with a larger web.
Within broad bounds, a 3X speed decrease for JavaScript over Rust does not really matter much in this application.
Also Rust does not use an automated garbage collection, which means developing such applications can be a lot harder.
That said, if implementing the code in Rust would be required to get this project approved,
I myself would be willing to learn (and even improve) Rust to do this.
But I would question if that would be the best choice for the project
(but maybe I just don't know enough about Rust).
Also, for some plugins to Thunderbird Server, like ones doing data mining
or textual analysis of tens of millions of messages and web pages that someone has squirrel away in Thunderbird Server,
Rust might be a natural fit for writing part of such plugins, which could then
be integrated with Node.js via Node's ffi module like shown here:
https://blog.risingstack.com/how-to-use-rust-with-node-when-performance-matters/

 Mozilla sagged and let too much Slack in

Slack is an alternative example of a web replacement for Thunderbird
Desktop -- but a centralized proprietary one. Slack is what happens when
Mozilla itself stops keeping up the tension on having developers support
distributed peer-to-peer content well. There are emerging free alternatives to
Slack, but they are facing an uphill battle, have little traction, and
some maybe are lacking a bit in their own innovation if they just try to
copy Slack. Because it is centralized and proprietary, Slack is the
newest threat to reliability/security and privacy on the web related to
encouraging yet more centralized messaging. For example, Automattic has
been proudly adopting Slack, meaning much of their real-time internal
communications are now archived and monitorable by a potential major
competitor.

Any vulnerability in Slack can compromise everyone's data (as in, entire
companies destroyed). Related:

"Slack Hack and Broken Model of Centralized Data"

https://medium.com/@muneeb/slack-hack-and-centralized-data-b71bbe1b9377

"To me the Slack hack is yet another reminder that centralized models
are broken by design. Slack is an awesome company and I‚Äôm sure
they‚Äôll comply with the best security practices. It doesn‚Äôt look
like the hacker got access to chat logs in this hack. But that still
means that Slack is a single point of failure. They‚Äôre a prime target
for hackers. A single place from where confidential information of a lot
of other companies can be accessed. ... This model of centralized
services and data repositories is broken by design. We need to move to a
decentralized world, where users are in control of their own data, their
own chat logs, with their own private keys. If Slack is managing access
control (figure above) then a hack on Slack means data of all companies
can get compromised. Compare this to a model where the hacker needs to
compromise companies individually. I can live in that world."

Personally, I just can't understand such a choice to use Slack for
anyone tech-savvy, let alone a major player in the web communications
space like Automattic. But then, I don't like Gmail either for that same
reasons. As akerb...@gmail.com pointed out: "I find it ironically
telling that, with all the good intentions, plans and features the
Foundation has regarding privacy online etc this discussion is taking
place on - Google Groups. With many a participant chipping in via
addresses ending in ... @gmail.com. So we're all using a browser that
respects our privacy to debate issues on a platform hosted by a data
grabber second only to the NSA perhaps. ... But I do think that it's a
fallacy to believe that privacy and user control on the web can truly be
achieved *just* through a browser and/or OS, no matter how good."

That is why I use Thunderbird and a reliable independent email host as a
relay. Even knowing that no doubt the US government and some other groups
probably copy everything (especially anything I send to gmail users or
Google Groups), at least I still have some local security, privacy, and
reliability, if not as much as I might like. Granted, I'm technically
savvy and do backups and such, and I can see the argument for Gmail or
Slack or other web services for those who are not -- just like I myself
both use WordPress.com and also host WordPress elsewhere depending on
who I've set the site up for (others or myself). So this is not to say
such services should not exist -- just that people should have a choice,
and people should be encouraged to think about that choice (including
perhaps by peer pressure and new social norms if new options become easy
to use). Another similar choice is when people choose to set up their
own local GitLab server instead of hosting projects at GitLab.com or
GitHub.com.

I've argued a bit with Paul Jones about #noemail on his blog to no effect.
He's right that email is often abused. In general, people use computers to much in all sorts of ways.
Spam can be a terrible nuisance.
But I feel he is wrong to essentially suggest social media is the practical answer and
by implication that we should all be using big services to mediate our communications with each other.
Blogs open to the internet get spam too now -- lots of it.
And I can't even now easily find the messages I posted on his #noemail blog years ago.
If they were in Thunderbird, I could easily find them.

http://ibiblio.org/pjones/blog/category/noemail/

 Taking too much for granted when the first woodpecker that comes along can destroy civilization

But just because many people can't use a tool right does not mean no one
should use it when it otherwise can serve a useful purpose. What happens
to the "web" Mozilla says it cares about if Gmail and Slack were both to
disappear overnight for economic or political reasons in five or ten
years? How can the web be maintained if most of the personal email
archives and chat archives in the world suddenly vanished through
someone (government, extortionist, script kiddie) shutting down just two
de-facto monopoly companies? And worse, what happens to all the pretty
HTML, CSS, and JavaScript on the web if the web itself becomes
inaccessible? Where is all that civilization's knowledge then, when you
can't get to WordPress.com, and you can't get to archive.org, and you
can't get to Mozilla.org -- like after a huge solar flare? Why bother
having saved local copies of web pages if FireFox is not very good at
making the local copies link together like the live centralized web?

 Peer-to-peer is actually the soul of the web

Peer-to-peer is now, and has always been, the soul of the web.
Email specifically is still the single most-important way people validate their identity on the web.
Thunderbird is essentially Mozilla's one widely-used peer-to-peer product -- a real
success story in that sense (even if email is relayed through various servers).
As Dirkjan Ochtman wrote: "Can you comment why you think
Thunderbird (or maybe even email in general) is not part of this Web
that we love that is at risk? I've been wondering whether the focus of
Mozilla on HTML and related technology is a bit too narrow , when a lot
of the battle in my view is being fought around ecosystems (both in
terms of app stores and "cloud" technology) where Thunderbird/Lightning
and its ecosystem might actually be more of an asset." Or as Benjamin
Kerensa wrote: "Thunderbird has continued to grow despite Mozilla removing paid staff from its
development and eliminating resources it had. (Actually has more users
than Firefox OS)". Or as Mitchell Baker wrote: "I use Thunderbird to organize vast parts of my life".
I feel that way too about Thunderbird. Others wrote
even more passionate pleas, pointing out the lack of workable
alternatives like for encrypted communications. Why throw that peer-to-peer local-storage successful
concept away even if the Thunderbird implementation needs to be
refreshed ideally in some creative way to link more closely with web
technologies like HTML, CSS, JavaScript, and DOM?

Distributed data is not just about email. It is not even just about
email plus calendaring and TODO lists and PIM data and such as with the
mostly abandoned Chandler project. Or both those plus small federated
wikis like with Ward Cunningham's latest great effort. Or even that plus
just real-time white-boarding and real-time chat conversations. Or even
that plus just a git-compatible distributed versioned file system.
Distributed data, along with real-time interaction, is a far grander
vision -- a vision much greater than the sum of its parts.

 The social semantic desktop vision

If you look at ideas like the "Social Semantic Desktop", all sorts of
things are possible. See for example:

http://semanticweb.org/wiki/Semantic_Desktop

"The Internet, electronic mail, and the Web have revolutionized the way
we communicate and collaborate - their mass adoption is one of the major
technological success stories of the 20th century. We all are now much
more connected, and in turn face new resulting problems: information
overload caused by insufficient support for information organization and
collaboration. For example, sending a single file to a mailing list
multiplies the cognitive processing effort of filtering and organizing
this file times the number of recipients - leading to more and more of
peoples' time going into information filtering and information
management activities. There is a need for smarter and more fine-grained
computer support for personal and networked information that has to
blend the boundaries between personal and group data, while
simultaneously safeguarding privacy and establishing and deploying trust
among collaborators. The Semantic Web holds promises for information
organization and selective access, providing standards means for
formulating and distributing metadata and Ontologies. Still, we miss a
wide use of Semantic Web technologies on personal computers. The use of
ontologies, metadata annotations, and semantic web protocols on desktop
computers will allow the integration of desktop applications and the
web, enabling a much more focused and integrated personal information
management as well as focused information distribution and collaboration
on the Web beyond sending emails. The vision of the Semantic Desktop for
personal information management and collaboration has been around for a
long time: visionaries like Vannevar Bush and Doug Engelbart have
formulated and partially realized these ideas. However, for the largest
part their ideas remained a vision for far too long since the
foundational technologies necessary to render their ideas into reality
were not yet invented - these ideas were proposing jet planes, where the
rest of the world had just invented the parts to build a bicycle.
However, recently the computer science community has developed the means
to make this vision a reality: ..."

That is a vision of a "web" worth working towards. And it is one with
both central data and local data. It is a world with both
client-to-shared-server and peer-to-peer connections. In fact, it's a
world where it is hard to tell the difference between any of those
categories -- where really good tools make such distinctions invisible
unless you choose to care about them.

And such a vision is far beyond just having a web email system. As Henri
Sivonen mentions suggesting mailpile as another alternative under
discussion -- and if we are only talking email, an existing system like
mailpile might well be a better migration path. But as R Kent James
wrote: "I sometimes imagine a world in which Thunderbird, Postbox, N1,
and Gaia Email all decide to work together to make a common, killer
communication client." That is really just a start though.

Part of this effort might involve working with the W3C to help define standards for semantic data
which might be useful in such a distributed Thunderbird Server as well as in other webapps.
For example, ideally, the project would promote a standard for exchanging
calendaring data as RDF-like triples, or contact info, or whiteboard data, or anything else.
Such standards may already exist, so the project would ideally inventory these and pick ones to promote.

 Groove and Notes were good examples even if proprietary

The original Groove software, by Ray Ozzie, also the creator of IBM's
Lotus Notes application, showed what could be possible (as did Notes).
Groove ahd all sorts of pluggable third-party tools (including arbitrary
file storage and wikis) on a distributed platform as a peer-to-peer
system that also had store-and-forward relay servers. Apache CouchDB as
well as Apache Accumulo and similar also show what is possible for
distributed data with indexes.

 NarraFirma shows what is possible with sophisticated FOSS single-page webapps

Further, as with the FOSS NarraFirma software for Participatory
Narrative Inquiry my wife (Cynthia F. Kurtz) and I created (written using TypeScript,
Mithril, D3, and Node.js -- plus a PHP WordPress plugin for easy
install), groups can collaborate in fine-grained ways on projects when
supported by good applications that support such fine-grained
collaboration. NarraFirma still uses a centralized webserver, but it
would be easy enough to make it work in a more distributed way such as
CouchDB/PouchDB enables or potentially using IndexedDB and some
browser-to-browser direct communications like WebRTC since it is based
on messages that generally define triples in a triple store. As Andrew
implies, you can do messaging with central servers. That itself is not
the issue. The issue is central vs. local, and shared vs. peered.

 Browsers have not prioritized local and peer-to-peer

Why do we not see more of these possibilities in practice? Part of the
reasons is that web browsers like Firefox have chosen not to prioritize
making distributed local data easy to manage or exchange (even as that
may be slowly improving). This Thunderbird announcement is just one more reflection of that.

It has even been suggested by others in a
recent Soylent News discussion on the Thunderbird issue that some of
that may be due to there not being an easy way to monetize supporting
distributed data given an advertising-supported web model?
https://soylentnews.org/comments.pl?threshold=0&highlightthresh=4&mode=nested&commentsort=0&op=Change&sid=10910#post_comment

I don't know if that is true, but as I said in my own comment there:
https://soylentnews.org/comments.pl?sid=10910&cid=270813#commentwrap

"I can look in my Thunderbird app and privately review and privately
search more than a million messages I've received stretching back for
over a decade, as well as review and search tens of thousands of
messages I've sent during that time. Tell me how to do that with a
scattering of web services (other than poorly and publicly with a web
search engine)."

I perhaps should have also added I can search a million messages in
Thunderbird without an advertisement in view?

 A co-evolution of a community with its tools, data, policies, and processes

As both Doug Engelbart and Clay Shirky have said in their own ways, a
group needs to co-evolve with its tools, data, policies, and processes.
Mozilla seems about to decide to stop co-evolving with a huge segment of
the web community who still cares about privacy and security and
reliability that comes from decentralized local data and peer-to-peer
interactions as reflected in Thunderbird. While a small group, these
people are often the ones who actually made the low-level infrastructure
of the web. Unless Mozilla revisits that policy, whether that policy is
intentional or accidental, ultimately it may be Mozilla that gets left
behind -- not the core web community. Sure, Firefox has some
peer-to-peer support (and that should be improved), but without reliable
easy-to-use local data storage and without supporting current email
protocols (email being the biggest peer-to-peer system there is),
Firefox in those ways is just a shadow of Thunderbird.

 Proposing Thunderbird Server to replace Thunderbird Desktop

So, what is to be done? Here is a a compromise until Mozilla creates
better web standards for storing and viewing and exchanging local data
and then implements them well (which I am all for). In the short term,
we could create a Node.js application in JavaScript/TypeScript as a for
storing, indexing, and searching millions of messages locally. It could
use Mithril and D3 for the front-end, defining a complex singe-page
webapp like NarraFirma has. In particular, Mithril can support browsing
tens of thousands of list items if the code is written a certain way (as
one demo shows). Mithril is very close to native HTML, one reason I
prefer Mithril over Niklas's suggestion of AngularJS (even as I applaud
Angular2's move to TypeScript). The backend could use using reliable
mbox flat files of messages plus a more brittle rebuildable index based
on sqlite as a start,. The backend would support complex searches
commanded from the webapp via some JSON api (and run in the background).
The index could support RDF-like triples exchanged in some messages
(like NarraFirma uses) to support arbitrary distributed applications as
plugins. Maybe CouchDB or Accumulo support would be added as storage
plugins down the road, for people who want to store and search trillions
of messages (including major parts of the freely licensed or fair use
surface web they might copy locally or share with friends). Firefox (or
any other standards-compliant web browser) could connect to this local
Thunderbird Server. Being a server, families could share just one server
if they wanted, or even companies could share just one, same as with,
say, WordPress.

This system could as eventually do everything Slack could do, but would
be open so that more plugins (written in JavaScript-compatible
languages) could be added for real-time shared whiteboards, chatting,
note taking, crowdsourced structure arguments, multi-perspective
sensemaking tools, Compendium-like IBIS concept maps, and more. Such
plugin applications might go way beyond regular email, to support things
like splitting up long messages (like this one) into individual points
that could become structured arguments in a web, or expandable outlines
with summaries written later for major sections, or with added semantic
metadata, with such textual refactorings then sent out as more emails or
as other types of messages to be processed by others with those plugins.
There could be a variety of plugins to democratize sensemaking and
decision support by taking lots of non-secret technology ideas from the
intelligence community (like ex-CIA officer Robert Steele writes about
in "The Open-Source Everything Manifesto: Transparency, Truth, and
Trust") and putting them in the hands of the everyone as Thunderbird
Server plugins. Plugins could also be added to publish directly to
WordPress or other platforms.
Plugins could support basic JavaScript/TypeScript development locally (and some simple local JavaScript IDE examples are on my GitHub repositories but others could no doubt do better).
Plugins could be written to allow new versions of emails to be sent with typo fixes.
Plugins could be written to check the license status of viewed content and filter out unfree content by various criterion.
Plugins could be written to keep local copies of Wikipedia pages, perhaps with improvements local to some community, more like Knol supported.
Plugins could we written to interface with a variety of backend messaging services, like IRC, Jabber, Twitter, or whatever.
Plugins could support end-to-end
encryption in various ways, or even just coordinating direct https
connections between web-based servers and relays
(with this caveat I suggest on the limits of encryption when advocating for social change).
A plugin could be written so Thunderbird Server could act as a proxy for web browsing,
which would open a whole new level to provide customization and filtering to incoming
web content a user was viewing (like Greasemonkey but at the server level).
Such a proxy plugin could also provide easy local archiving of all websites you visit that you want to archive,
and perhaps would support local group discussion tools and semantic desktop tools overlayed on all that third-party content.
Such a proxy might also include a built-in "Read Later" functionality to help manage information overload.
Node's socket.io would be used to support real-time collaboration beyond support for all the
usual email protocols. An API could be added for plugins so these local
servers could connect with each other via https as people wanted to
collaborate in real-time across a network of Thunderbird Servers.

This Thunderbird Server software could run on a Raspberry Pi, or any
desktop where Node.js is installed, and maybe even eventually Firefox OS
someday (like when JXcore runs there). The team could work hard to make
install go smoothly on all those systems, potentially even piggybacking
on Firefox's install and updating process where a Firefox plugin would
manage the Thunderbird install. Vendors might even sell US$50
Freedom-box-like "wallwarts" providing Thunderbird Server pre-configured
for home use (in a FreedomBox-like way) where you just plug it in to power and your network and
surf with Firefox to a local address like a home router and suddenly have all these amazing local semantic desktop tools.
For those still stuck on an OS that does not run Thunderbird Server for some reason, they could buy a
Raspberry Pi for cheap that does run Thunderbird server and connect to it over the network, or
set up Thunderbird Server on a VPS somewhere.

There might even be a release that
bundles Firefox in with Node.js as an executable application (similar to
Chrome equivalents with Node.js apps and how Automattic now makes
a WordPress Desktop App for Mac
and Windows that wraps Calypso
using Electron build on Chromium).
Had Mozilla supported such a project four years ago, maybe Automattic would be building
a desktop app based on Firefox and not Chromium?

While this would not be an initial effort, eventually it would be great if Thunderbird Server could run on Android and Firefox OS,
so such devices could be used to host Thunderbird Server in a portable way you can carry with you everywhere you go.
Using ideas from CouchDB, my own Pointrel system, Thunderbird Server could support master-to-master replication,
so that you could keep some selected part of your Thunderbird content synchronized between, say, a desktop and your phone.
But even without that kind of direct mobile deployment support for Thunderbird Server,
an effort would be made so that Firefox users on mobile phones could easily use Thunderbird Server via the network in a mobile-friendly way
for at least basic functions (such as reading recent new emails fitting some search criterion and sending simple short emails).

All the most important Thunderbird desktop plugins would be ported to
this new Thunderbird Server system either by the project or by
third-party owners. Hopefully the team could write a porting tool in
TypeScript to make this easy, translating XUL to Mithril. Frankly, a
major reason I've not written plugins for Mozilla products and been more
tempted by Chrome is not wanting to learn yet another system (XUL) when
I want to be using just plain HTML. I'd expect other existing plugin
developers might be eager to leave XUL behind, so such a tool would be
popular.

 Security

The best arguments against this Thunderbird Server approach may relate to security.

The biggest one is about tool diversity and is that
given your web identity is closely tied with your email address used to sign up for services,
it is better to have a completely separate tool for managing those identity emails.
So, if you are just using Firefox to browse your email, and Firefox is compromised,
then your entire web identity could be compromised.
I don't have a great answer to this, other that to point out that a lot of people already use webmail services.
Also, if Mozilla is sponsoring this project, then the extra pressure and scrutiny for security may be of benefit to Firefox development.
But if there were a single biggest conceptual reason this was a dumb idea, this would be it.
On the other hand, if Thunderbird gets left behind as Firefox moves on to new rendering engines,
unpatched vulnerabilities in Thunderbird will put Thunderbird users at increasing risk as time goes by.

Ideally, there should be some way to separate web identity emails more cleanly from other emails so they could be handled specially.
That is probably an area that needs more research.

However, beyond that big conceptual issue of reducing tool diversity, there are other practical issues related to security.
Existing webmail systems like SquirrelMail talk about multiple attack vectors:

http://squirrelmail.org/docs/admin/admin-8.html#ss8.1

"SquirrelMail is webmail interface written in PHP.
Webmail interface could be attacked through specifically crafted emails,
interface programming mistakes and user information hijacking.
It can be used to send unsolicited email messages from a hijacked or abused email account. ...
In order to prevent crafted email exploits SquirrelMail uses special htmlfilter library to filter dangerous html code and prevents loading of remote web data. Htmlfilter code needs constant updates because crackers discover various design problems in web browser and can try exploiting them in webmail interfaces.
If you want to be safe, make sure that you are running latest secured web browser version and SquirrelMail scripts are not outdated."

Of those, the most crucial one here is probably malicious html email (even as the others would always be risks).
Since it is hoped that Thunderbird Server will be extended by plugins,
this risk goes even further to people sending each other copies
of webpages or closely collaborating via whiteboards.

A few ways malicious html could compromise the system are if it tickles some browser bug to gain control of Firefox,
if it does the equivalent of cross-site scripting,
or if it affects locally stored data.
Unlike malicious html you need to surf to, there is greater risk in a system where people can send you arbitrary content.
That is a point made by Ben Bucksch on the tb-planning list.

There are few ways to deal with this risk; however managing this risk has to be an essential part of the project from the start,
so these are just a few initial ideas. They are:

1. As much as possible could be displayed in plain text. That is the default I normally use for Thunderbird Desktop myself.
When users don't choose this option, they could be informed about the risks, and maybe there could be a visual indicator of such?

2. Rather than use a blacklist htmlfilter that is brittle (as SquirrelMail says),
an approach similar to the one NarraFirma uses would be a second level,
where only whitelisted simple HTML constructs were approved. I have some code that uses Mithril to
construct such output that is intrinsically safe, where problematical html results in an error message instead of the problematical HTML.

https://github.com/pdfernhout/narrafirma/blob/v0.9.5/webapp/source/sanitizeHTML.ts

3. Some sort of code that worked like Squirrelmail's htmlfilter could be added, as
another display level (filtered HTML). Similar code could also score the likely threat potential of html, as in,
if the html just has a few formatting tags, it might be low risk, but it if has images it might be medium risk,
and if it has JavaScript it could be extremely high risk.

4. When you really wanted to see exactly the HTML sent, that could be displayed in an iframe with the content hosted in a subdomain.
Since the Node.js server was running the whole system,
it could easily create subdomains
for every single email or other content to isolate content items from each other and from the core email application.
This is a big difference from the setup something like a typical PHP webmail app like SquirrelMail would assume with just one responding domain that talked to the PHP code.
Then Firefox's normal security boundaries would protect the user from malicious html that tried to affect the rest of the email system.
Displaying such html email could still tickle bugs in Firefox,
but there is no real way for Thunderbird Server to prevent that if a user wants to
display complete HTML as sent -- other than maybe rendering the HTML on the server perhaps.
A variant of this level might strip out JavaScript, but that can be problematical to do correctly.

5. As another level of security, Thunderbird Server could track digital signatures for content, and perhaps warn
about unsigned content when you tried to display it as full HTML.

Let's say some of these are not good enough. This is an example of where Thunderbird Server could drive Firefox innovation.
Firefox should then change to make it possible to do this safely -- whatever changes it takes to Firefox like enhancements to the security model for safe rendering of untrusted HTML.
Third parties should not be having to constantly create adhoc mini-renderers and filters in JavaScript to display untrusted content; a web browser and perhaps the DOM itself should make that easy.
Such security changes would not just be supporting Thunderbird Server.
They would be supporting an entire new possibilities for peer-to-peer webapps.
This is probably the most important reasons Thunderbird Server should be done as a Mozilla project,
not as a project spunoff somewhere else.

 A wild guess as to how long it would take

First, the following is just a wild guess, mostly based on the functionality that I use in Thunderbird (which is fairly basic),
and how long NarraFirma took to make. It may be completely off.
I downloaded a Thunderbird source tarball (comm-esr31) to try to get a line count,
and it expanded to over one gigabyte of source.
That seems just a crazy large amount of code. Much of it is no doubt duplicating what is in Firefox
and so can be ignored if Firefox itself was used. I'm assuming that is the 922MB in the "mozilla" folder.

Of the remaining 8% of the non-Firefox code, "suite/mailnews" folder totaled 1.7MB which seems in the ballpark of
the amount of code I might expect for an email application.
Obviously, there may be various libraries and such that support that application.
There is a "browser" folder under the "suite" directory that looks like it might belong to Thunderbird Desktop.
So, stepping back a bit, the "suite" directory itself is 22MB.
But there is also a "mail" directory at 22MB and an "ldap" directory at 15MB, and a "mailnews" folder at 26MB.
And there are some other smaller ones like "chat", "calendar", "im", and "editor".
I'm not really sure which of these is used by Thunderbird Desktop, as Seamonkey is perhaps mixed in there too?
As an upper limit, the Thunderbird Desktop application itself is about 80MB of source.
Probably, with duplication, that number might be smaller, so I'd guess at most 50MB?
So, that is a big reason Thunderbird is so hard to maintain -- probably at least 95% of the Thunderbird source
is complex software written mostly in C++ that has nothing to do directly with Thunderbird.

I'm guessing that number might even be as high as 97% of the Thunderbird codebase not being about email?

Further, it is possible some of the need for writing equivalents for that code would just go away
if existing Node.js email libraries could be leveraged somehow?
There is a 4MB "mailnews/test" file (a lot of it is data, but some is JavaScript), so it seems like there are at least some unit tests?

I'm sure I could figure this all out in more detail if I took more than the few minutes I've given to looking at that structure.
But certainly, this indicates how Andrew is right about the "technical debt".
It is hard to maintain code when you have to download and then paw through literally a gigabyte of code,
where about 97% of it has nothing to do with the application in question.

It would be good to have a better estimate of application complexity from someone who knows the
Thunderbird codebase well.
And also, any estimate based on just the Thunderbird source ignores the issue of porting plugins.

I'm guesstimating, more based more on my use of Thunderbird than the above code size,
that it would take is a year-long effort by a team of about
seven people (developers, UX, testers, evangelists) to get a workable
reliable Thunderbird Server system that almost all Thunderbird desktop
users would want to switch to. In parallel with initial working
prototypes for early feedback, another first step would be to inventory
the available FOSS mail libraries and existing mail-related webapps
(including the Firefox OS mail app) and see what might be useful and
what needs to be written. Basic email import, retrieval from servers,
reading, and search functionality could probably be running in a couple
of months (perhaps building on something like emailjs), with more and
more functionality then iterated driven from community feedback
afterwards (like to make search better).

The results could be awesome. :-) And Mozilla could take all the credit
for supporting an innovative effort created by working in public in an
open way, including via the Mozilla Governance and tb-planning mailing lists. :-)

 On whether much Thunderbird Desktop code would be reused

Writing an software application is often equivalent to walking through a maze when mapping it.
You really can't see the whole thing at once, and you have to backtrack,
and you may even end up going in circles for a time.
When you get out of the maze, you probably will know the shortest way through it.
It might have taken you hours to figure out such a path, but then someone with the map can
walk through the maze in minutes by just following what you did.
In that sense, I feel the biggest part of what Thunderbird Desktop supplies in the intial
requirements -- that the end result of Thunderbird Server should do pretty much everything
Thunderbird Desktop does. That is the maze of user expectations that has been mapped by Thunderbird so far.

As far as code goes, I expect most of the JavaScript/TypeScript code would be developed from scratch because most would
relate to the UX or the Node.js backend.

The XUL code might just be completely thrown away, after perhaps consulting it for ideas and requirements.
Still, if a XUL to Mithril/JavaScript tool was written, maybe some of the XUL might be worth using in translation to start with?

Essential parts of the C++ of Thunderbird Desktop could be extracted
and translated automatically to JavaScript/TypeScript using Emscriptem/asm.js perhaps.
Such transpiled code could then be refactored in idiomatic JavaScript/TypeScript as time permits.
I'm not sure it would be worth that for any of such C++ code though, given email has standards which are consultable,
and which should be improved if they are ambiguous or hard to understand.
Extracting snippets of C++ so they compile might be a big chore with a lot of interdependencies.
Without good tests to match the snippets, it is hard to know if they do the right thing.
But writing such tests is probably a lot more work than actually writing the code.
Still, it's likely that at least some of the C++ code would be an important reference, so I just don't know how much would prove useful.

Again, someone who knew the Thunderbird Desktop codebase well might have some valuable opinions on all this.

 Eventually Thunderbird Server becomes a Firefox plugin

Eventually, the Firefox team could figure out how to integrate this sort
of localized storage and peer-to-peer Thunderbird functionality directly
into the Firefox web browser (like adding a Node.js-compatible
JavaScript-based server to every Firefox install). Then all this
Thunderbird Server code might even get folded into a major new Firefox
plugin that used this new emerging defacto standard of
robust-local-storage peer-to-peer capacity in Firefox.

As Niklas points out, such a complex and demanding application would
provide another way to stress test Firefox, which might drive further
Firefox innovation (as via providing ideas for Mozilla Servo). If there was some reason this Thunderbird Server
approach hit a brick wall because of some limitation of Firefox (like
poor performance in scrolling lists of items, or managing multiple
windows, or whatever else) -- the Firefox team could prioritize fixing
that in the next Firefox release, which would help Firefox grow. It
would be reasonable for Mozilla to say that Thunderbird Server required
Firefox for best performance.

 Pick me! Pick me! Ooh, Ooh, Pick me! (Put your hand down already!!!)

I just applied for a Mozilla Growth Engineer job suggesting improving
Thunderbird. So, I'd be very happy to implement this exact project over
the next year. :-) Seriously, I could start today. I's be tempted to
start it on my own if I hadn't just spent the past year or so blowing
all my cash/credit on working for free on another
JavaScript/TypeScript/Mithril/D3/Node.js FOSS project (NarraFirma) and
so I now need to find a paying gig again. :-) But there is also not much
point in my writing such software if there won't be users, and I doubt
something I wrote on my own would have much traction no matter how good
it was, and one person can also only do so much anyway. But there might
soon be lots of users *if* Mozilla got behind this manifesto with a
small skunkworks team, and said: "This is the way we are retiring
Thunderbird desktop -- by replacing it with a modern
web-technologies-based locally-storing peer-to-peer
semantic-desktop-aspiring Firefox-friendly Thunderbird Server!" :-)

 Make the old Thunderbird obsolete while moving forward to a web future

As Buckminster Fuller said, "You never change things by fighting the
existing reality. To change something, build a new model that makes the
existing model obsolete."

The above is a sketch of how to produce something that most (admittedly,
not all) Thunderbird desktop users would see worth the effort of
switching to once such a server was proven stable. There would no doubt
be a lot of complaints even if 10% of Thunderbird Desktop users did not
want to switch (as that would be still almost a million users). But is's
the best I have to offer that seems like a good path forward. As a
downside, if 90% of Thunderbird Desktop users moved to Thunderbird
Server, the remaining 10% of Thunderbird Desktop users would have an
even harder time maintaining Thunderbird Desktop given less users to
contribute; sorry about that. :-(

 Software is hard, but it can still be worth trying anyway

It is possible the project was a flop for all of the many reasons

"Software is Hard" (and many software projects do flop):

http://www.gamearchitect.net/Articles/SoftwareIsHard.html

"But the nature of software is that the problems are always different.
You never have to solve the exact problem that someone's solved before,
because if software already existed that solved your need, you wouldn't
have to write it. Writing software is expensive. Copying software is
cheap. Scott Rosenberg coins this as Rosenberg's Law: Software is easy
to make, except when you want it to do something new. The corollary is,
The only software that's worth making is software that does something new."

Still, despite that risk, this effort would still be doing the right
thing to affirm the core essential values of locality and peering that
make Thunderbird great. And Firefox at least might still get better
because of the entire process of trying to be a frontend to Thunderbird,
so in that sense it could still be money well spent as far as just the
Firefox team was concerned. :-)

 Software as gardening leads to "ThunderbirdS are Grow!"

As Andy Hunt and Dave Thomas said related to their best-selling book of
software best practices, The Pragmatic Programmer: From Journeyman to
Master, "Rather than construction, programming is more like gardening."

http://www.artima.com/intv/garden.html

Bill Venners: In your book, The Pragmatic Programmer, you say, "Rather than construction, programming is more like gardening." I really like your gardening metaphor for software development. Can you elaborate on it?

Andy Hunt: There is a persistent notion in a lot of literature that software development should be like engineering. First, an architect draws up some great plans. Then you get a flood of warm bodies to come in and fill the chairs, bang out all the code, and you're done. A lot of people still feel that way. I saw an interview in the last six months of a big outsourcing house in India where this was how they felt. They paint a picture of constructing software like buildings. The high talent architects do the design. The coders do the constructing. The tenants move in, and everyone lives happily ever after. We don't think that's very realistic. It doesn't work that way with software.

We paint a different picture. Instead of that very neat and orderly procession, which doesn't happen even in the real world with buildings, software is much more like gardening. You do plan. You plan you're going to make a plot this big. You're going to prepare the soil. You bring in a landscape person who says to put the big plants in the back and short ones in the front. You've got a great plan, a whole design.

But when you plant the bulbs and the seeds, what happens? The garden doesn't quite come up the way you drew the picture. This plant gets a lot bigger than you thought it would. You've got to prune it. You've got to split it. You've got to move it around the garden. This big plant in the back died. You've got to dig it up and throw it into the compost pile. These colors ended up not looking like they did on the package. They don't look good next to each other. You've got to transplant this one over to the other side of the garden.

Dave Thomas: Also with a garden, there's a constant assumption of maintenance. Everybody says, I want a low maintenance garden, but the reality is a garden is something that you're always interacting with to improve or even just keep the same. Although I know there's building maintenance, you typically don't change the shape of a building. It just sits there. We want people to view software as being far more organic, far more malleable, and something that you have to be prepared to interact with to improve all the time.

So, if Mozilla wants to continue to grow in a co-evolving
local-data-respecting peer-to-peer way as above, I'm ready to help lead
an international team of software gardeners to rescue Thunderbird from a
decade of technical debt -- a team whose motto could be "ThunderbirdS are Grow!". :-)

 Collaboration possibilities

And any current or previous Thunderbird desktop maintainers and C++
experts at Mozilla (including Andrew) who wanted to work on such a
Thunderbird Server in TypeScript would be very welcome to join me. There
is no doubt a lot of valuable domain knowledge about email they know
which would make a Thunderbird Server project go a lot better and faster if they
chose to help. I doubt the Node.js email handling libraries are
very complete. But they would be by the time we were done with them -- another big plus for the web community whatever else happens. :-)

I'd also be happy to let someone else already at Mozilla take
the lead here and just help out by coding away full-time on a Mithril
GUI that duplicates Thunderbird desktop's functionality as a webapp
and/or writing Node.js modules or such.

I'd much rather be coding cool
stuff in TypeScript myself than begging higher ups for more resources or
trying to "herd cats". But I'm willing to take the lead if no one else
better qualified wants to.

--Paul Fernhout

http://pdfernhout.net

The biggest challenge of the 21st century is the irony of technologies
of abundance in the hands of those still thinking in terms of scarcity.

 Update: 2015-12-11

I mentioned this manifesto on a Mithril mailing list.

https://groups.google.com/forum/?_escaped_fragment_=topic/mithriljs/RByPM02InVQ#!topic/mithriljs/RByPM02InVQ

Kyle Hayes there pointed out that Roundcube has just raised about
US$100K on indegogo and suggested joining forces with them:

"Creating the future of email, together!"

https://www.indiegogo.com/projects/roundcube-next--2#/

"Online communication connects us all: friends, family, teachers,
co-workers and collaborators. The Internet has transformed societies,
and personal communication has been at the heart of that. Email,
contacts, calendaring, instant messaging, collaborative editing and
cloud storage are part of how we live, work and participate in society
each and every day. Roundcube is the world's most popular open source
webmail application. It is used by millions of people to access their
email (and much more) on their own terms every single day. But we can't
sit still. The web has evolved a lot in the last decade, and we want
Roundcube to take full advantage of the best web technologies available
as well as meet the expectations of today's users. We are calling this
project "Roundcube Next"."

Glad to see someone in the web space understanding the importance of
combining ideas about local storage and peer-to-peer messaging to
provide privacy and security on the web and succeeding with funding that
idea. :-)

Someone who is not waving dangerous bird-harming focused lasers around. :-(

After relying on Thunderbird for so long, it would be very saddening to
have to consider something like an improved Roundcube for local email.
Too bad Roundcube is in PHP (assuming they stay with that). Still as
with NarraFirma, if most of the webapp front-end is in JavaScript (or
transpiles to JavaScript), it almost does not matter what the backend it
is in, because you may hardly touch it depending on the architecture.

Barney Carroll afterwards pointed me to mailpile.js
which could be another project to join forces with up with (though the backend there is Python).

Sean Pappalardo on the tb-planning list
pointed to SOGo as
an open-source product with a Thunderbird-lookalike web interface.
He raised some licensing concerns from a Mozilla perpective related to it's GPL/LGPL licensing.
Another system (more of a library?) that has been mentioned on that list is email.js,
most recently by Joshua Cranmer asking for help related to sharing code between email projects.

Quite likely, between RoundCube, mailpile.js, SOGo, SquirrelMail, email.js, and various other systems around,
there could be various overlaps and synergies that could benefit the whole web mail (and more) ecosystem.
Still, it's in the nature of writing complex software applications that differing assumptions
get made that may make it hard to integrate components from one into the other.
Andrew Sutherland made that point on the tb-planning list.
It generally takes 3X to 10X the effort to make a reusable component than to make a locally-usable one.
And often you just can't see the essentially generality to design a reusable component well
until you have at least three examples from substantially different contexts.

Joshua Cramner suggested on the tb-planning list
that:

For what it's worth, the rough list of stuff that is sanely shareable
IMHO: POP, IMAP, SMTP, NNTP, chat protocols (IRC, Oscar, Yahoo, MSN,
???), LDIF, vCard, CardDAV, iCal, CalDAV, MIME (+ mbox, S/MIME, PGP,
TNEF, uuencode, yEnc), SASL, Bayesian message classification,
SIEVE/MANAGESIEVE. Probably a few utility libraries as well.

As I suggest in the proposal, it could be unfortunate for Firefox and Mozilla
if someone other than Mozilla does this, because they would be missing the boat towards,
as Niklas said, a way to really stress Firefox in new directions to help Firefox grow.
As Ben Bucksch pointed out in "Why we need Gecko updates",
it is hard to do webmail securely given the potential risks of processing HTML (especially when sent to you in messages targeted at you specifically).
Putting those ideas together in the proposal, I suggest Mozilla and Firefox and the web itself
would benefit from that challenge, as it might take changes to Firefox and even web standards
to make such webmail reasonably secure if the webmail system was intended to support all kind of fancy plugins.
Still, maybe Roundcube will prod Mozilla to improve Firefox, so that might work out OK in the end.

However, even then, current Thunderbird users relying on popular plugins will have to figure out
how to manage without the plugins. Firefox marketshare won't be boosted by Thunderbird users
who stay with Firefox *because* Thunderbird Server works best with it (from the most testing
and from any emerging standards Firefox has implemented for Thunderbird Server).

Roundcube is good. I actually use it myself sometimes to check for new email via my email host sometimes
when using a laptop computer I develop on besides my office desktop (before downloading my email to Thunderbird on the desktop).
I even use Roundcube more and more to compose some short replies from that development laptop;
I then BCC myself so Thunderbird gets a copy (although those unfortunately don't go in the sent folder).
I wish Roundcube the best of success, and that success will benefit me in things I already do.
However, "the woods would be pretty quiet if no bird sang there but the best" -- so,
I don't think the web is better off having one less community with its own diverse approach to email.

How can a company like Mozilla that prides itself on diversity be so willing to discard the diversity of local peer-to-peer?

Anyway, we can dream even if our dreams may not come true any time soon.
I had applied this week on Wednesday to Mozilla as a Growth Engineer suggesting improving Thunderbird,
and I got rejected Thursday, which seems like some new record in HR turnaround. :-)

However, I've applied to Mozilla a couple of times before, including over four years ago for the Thunderbird team
(also suggesting the social semantic desktop idea, and never hearing back that time that I recall).
So, I'm probably in some list somewhere, maybe even for a good reason unrelated to liking Thunderbird a lot. :-)

It probably did not help my application that I mentioned the first two times I tried to submit
my application using jobvite and Firefox, jobvite just discarded what I wrote without acknowledgement,
and so, ironically, on the third time, I ended up using Chrome to apply to Mozilla for a job about growing Mozilla. :-(
Still, as I use NoScript with Firefox, it is possible I did not enable enough stuff for that jobvite site to work correctly
(but I have a lot of experience doing that).

It is not the first time I have not been able to use Firefox at a website.
Uploads fail at Workable (where I applied recently for a Lead Software Engineer at VolunteerMatch).
Even for GitHub, I have to use Chrome to upload releases now. That situation just makes me sad --
especially when I read in the news yesterday that after Mozilla's "laser focus" on Firefox OS,
a focus that has for years starved both Thunderbird and Firefox Desktop of resources,
and which many people have suggested from the start was a very problematical choice given all the failures in the mobile space,
Mozilla is starting to throw the results away. :-(
A related Soylent News comment and followup by me about that.
But in essence, even as important as mobile is now, desktop Firefox and peer-to-peer email remain very important to the web.
Is a "laser focus" even compatible with a realistic diversity needed by a large organization to grow?
It is seedlings that someday grow into huge oak trees; burning all your seedlings down every year with a laser
to protect the big oaks means that you will not have more big oak trees when the last ones
fall over from internal bitrot and the winds of social change.

The mighty oak tree of Thunderbird Desktop seems about to fall over since, as above, about 97% of the code
is unrelated to the application, and that technical debt makes it hard to maintain.
I can still hope that Mozilla will put the laser down and think about the importance of birds and seedlings in a healthy ecosystem. :-)

As mentioned above, had Mozilla supported such a project four years ago, maybe Automattic would be building
a WordPress desktop app based on Firefox and not Chromium? We'll never know...

What happened in China in the 1950s with a laser focus on eliminating sparrows is a cautionary ecological tale for Mozilla to reflect on:
https://en.wikipedia.org/wiki/Four_Pests_Campaign

The four pests to be eliminated were rats, flies, mosquitoes, and sparrows.
The extermination of the last upset the ecological balance, and enabled crop-eating insects to proliferate. ...
The campaign against the 'Four Pests' was initiated in 1958 as a hygiene campaign by Mao Zedong,
who identified the need to exterminate mosquitoes, flies, rats, and sparrows.
Sparrows – mainly the Eurasian tree sparrow – were included on the list because
they ate grain seeds, robbing the people of the fruits of their labour.
The masses of China were mobilized to eradicate the birds, and citizens took to banging pots and pans
or beating drums to scare the birds from landing, forcing them to fly until they fell from the sky in exhaustion.
Sparrow nests were torn down, eggs were broken, and nestlings were killed.
Sparrows and other birds were shot down from the sky, resulting in the near-extinction of the birds in China.
Non-material rewards and recognition were offered to schools, work units and government agencies in accordance
with the volume of pests they had killed.
By April 1960, Chinese leaders realized that sparrows ate a large amount of insects,
as well as grains. Rather than being increased, rice yields after the campaign were substantially decreased.
Mao ordered the end of the campaign against sparrows, replacing them with bed bugs in the ongoing campaign
against the Four Pests. By this time, however, it was too late.
With no sparrows to eat them, locust populations ballooned, swarming the country and compounding the ecological problems
already caused by the Great Leap Forward, including widespread deforestation and misuse of poisons and pesticides.
Ecological imbalance is credited with exacerbating the Great Chinese Famine,
in which at least 20 million people died of starvation.

So, sometimes a laser focus is incompatible with a healthy diversity.

 Update: 2015-12-12

I sent this to the Mozilla Governance email list, but it still as of yet has not been approved by the moderator.
Further update (2015-12-14): they posted it, but no replies yet: https://groups.google.com/d/msg/mozilla.governance/kAyVlhfEcXg/-NST0ZTeCQAJ

I fixed a few of the worst typos in it.
Posting stuff at 5:30am after staying up all night working on it is always a dumb idea
in a typographical sense -- or probably for other reasons too. :-)

Mitchell-

Thank you for bringing up these issues in a public forum and encouraging
people to be vocal.

The Mozilla mission page says, at the top, "We’re building a better
Internet", but then says lower down, "Our mission is to promote
openness, innovation & opportunity on the Web." That mission page is
surprising when you think about it, given that Mozilla seems to be
confused about the difference between a whole (the internet) and a part
(the web). On the the Mozilla Manifesto that situation is reversed -- "the web" is
mentioned in the title up top and then not mentioned
directly in any of the next ten points which almost all mention "the
internet". That confusion may in turn lead to some conflicts and related
strong feelings based on related misunderstandings or widely differing
priorities.

If Mozilla's mission in really to build a "better internet", then
abandoning email and instant messaging and other forms of peer-to-peer
communication is a clear dereliction of duty, because those are
important internet applications (even if sometimes limited resources do
force difficult choices).

If Mozilla's mission is just to improve "the web" somehow, then it is
easier to say email and IM do not matter to that narrower mission --
except incidentally, given the web would likely quickly collapse without
email and IM to connect the maintainers of the web closely together in
near real-time, and also that email and IM can be done via webapps
communicating with web servers that act as gateways to non-HTTP internet
services.

Below are observations, opinions, questions, and suggestions that
elaborate on that theme to try to help move past that fundamentally
confusing mission statement as it relates to Thunderbird. The deep
question is, should such peer-to-peer internet tools that use local file
storage like Thunderbird be something Mozilla cares deeply enough about
to put a lot of money behind them? I hope Mozilla will consider the
below before making a final decision on the issues you raised in your
original email.

--Paul Fernhout (pdfernhout@kurtz-fernhout.com)

On Tuesday, December 1, 2015 at 12:29:47 PM UTC-5, Mitchell Baker wrote:

> Communications tools remain key, that's clear. Today the big tools
> are WhatsApp, Viber, Line, etc. These are the communications tools
> that hundreds of millions of people use as their home, and which are
> pushing us away from the Web and into individual proprietary product
> offerings.

Proprietary internet-connected applications like WhatsApp (instant
messaging client for smartphones), Viber (text, picture and video
messaging, voice calling), and Line (exchange texts, images, video and
audio, and conduct free VoIP conversations and video conferences on a
range of platforms) will come and go "today" based on paid promotion to
drive up user numbers linked with fads about "the next great thing".
I've only heard of one of those three before. I have not used any of
them and nor do I want to (especially because they are proprietary).
Granted, I'm not a teenager, and I am also not a big mobile phone user.
In round numbers, investors have poured about twenty billion dollars
into those three proprietary ventures taken together (just basing that
mostly on Facebook's purchase of WhatsApp) -- but all three of these
specific services can be replaced by similar alternatives as far as
basic functionality. Each may not even exist as viable businesses in
five years -- although no doubt then people will still be exchanging
pictures and chatting with each other in some way or another, like via
improved email tools. :-) None of those three apps are essential to
maintaining a secure identity on the web in the way that reliable email is.

Twenty billion dollars could have funded more than 200,000 FOSS
full-time developer-years of work on better email tools (perhaps a
million developer-years total if in China or Eastern Europe or Russia).
Socially, it is hard to argue those proprietary products were good
social investments, even if they turn a profit someday. One may argue
some of that money went to physical infrastructure for servers, but that
infrastructure would not have been needed with a more distributed data
and networking model. Also, the money to fund those proprietary products
ultimately still comes from the pockets of the users, even if in
indirect ways related to eventual product purchasing decisions shaped by
advertising rather than, say, a direct tax. So, those three apps
potentially cost society million person-years of FOSS development that
did not happen. :-(Do you think even Facebook itself would still be
interesting to anyone after a million person-years of coordinated
development went into an improved Thunderbird that ran everywhere and
did everything one might want to do related to real-time collaborative
communications over the internet? What could our networked lives and the
web be like right now if those (potential) million developer years would
have been spent differently?

By the way, from Wikipedia on Viber:

"On November 4, 2014, Viber scored
1 out of 7 points on the Electronic Frontier Foundation's secure
messaging scorecard. Viber received a point for encryption during
transit but lost points because communications are not encrypted with a
key the provider doesn't have access to (i.e. the communications are not
end-to-end encrypted), users can't verify contacts' identities, past
messages are not secure if the encryption keys are stolen (i.e. the
service does not provide forward secrecy), the code is not open to
independent review (i.e. the code is not open-source), the security
design is not properly documented, and there has not been a recent
independent security audit. AIM, BlackBerry Messenger, Ebuddy XMS,
Hushmail, Kik Messenger, Skype, and Yahoo Messenger also scored 1 out of
7 points. In contrast, OpenWhisper Systems' free, open source TextSecure
and Signal scored perfect 7 out of 7 on the EFF Secure Messaging
Scorecard, as did the free ChatSecure, Cryptocat, Pidgin with
Off-the-Record Messaging, and the commercial Silent Circle suite. Also
Telegram scored a perfect score for its "secret chats.""

Those highly ranked systems mostly seem to follow the general
open-source distributed Thunderbird model more? And presumably none of
them had the same amount of money put into them as Viber?

Email has been with us for decades and shows little sign of going away.
Mozilla had neglected this need for reliable email by reducing funding
to Thunderbird and email-related research over recent years. Now Mozilla
seems about to disregard entirely a fundamental need of literally
billions of internet users by spinning off Thunderbird rather than
investing in it to grow it into something even greater than it is now. A
decision to spin off Thunderbird may be justifiable on short-term
business grounds, but it is still sad.

Consider this report that predicts the continued growth of email in
parallel with social networks:

http://www.radicati.com/wp/wp-content/uploads/2013/04/Email-Statistics-Report-2013-2017-Executive-Summary.pdf

"The total number of worldwide email accounts is expected to increase
from nearly 3.9 billion accounts in 2013 to over 4.9 billion accounts by
the end of 2017. This represents an average annual growth rate of about
6% over the next four years. ... Email is remains the go-to form of
communication in the Business world. In 2013, Business email accounts
total 929 million mailboxes. This figure is expected grow at an average
annual growth rate of about 5% over the next four years, and reach over
1.1 billion by the end of 2017. ... In 2013, the majority of email
traffic comes from business email, which accounts for over 100 billion
emails sent and received per day. Email remains the predominant form of
communication in the business space. This trend is expected to continue,
and business email will account for over 132 billion emails sent and
received per day by the end of 2017. ... Instant Messaging (IM) is also
showing slower growth due to increased usage of social networking, text
messaging, Mobile IM, and other forms of communication by both Business
and Consumer users. In 2013, the number of worldwide IM accounts totals
over 2.9 billion. ... Social Networking will grow from about 3.2 billion
accounts in 2013 to over 4.8 billion accounts by the end of 2017."

Key point: "100 billion emails sent and received per day". Email is how
the web was built. Email is still what is used to keep the web running.
Maybe that was and is a dumb idea given what a mess email is in practice
(including from spam), but that's the way it is, and it does not seem
about to change anytime soon.

I don't want to call those three proprietary services you mentioned
fluff because I'm sure people like them and find value in them. Maybe
I'll even feel forced someday by peer pressure to use one to communicate
with someone I care about. But if those three services did not exist,
people would easily get by through picking alternatives, including even
better open source alternatives (or by just using email), and the web
would hardly notice it.

By contrast, shut down all email communications, and how long would the
web as we know it exist practically speaking, with no new validated
website signups, no notifications, and no address books? How would most
technologists do their jobs without email archives or newsgroup archives
to consult? How would Mozilla itself function? Sure, Automattic uses
blogs internally to great effect and reduced email traffic; however, it
is not clear that scales to the public web though as at they very least
you still need a notification system for new messages and some common
reliable authentication system (which email generally is still used
for). That is one reason why, as above, there are about a billion
business-related email accounts in the world.

A downside of working in the middle of a jumping tech scene is it is all
too easy to get caught up in hype cycles. Anyone around the Silicon
Valley area is surrounded by technophiles rushing after the latest fad
or the latest huge venture investment to be the next well-funded
pets.com (as well as being a target of the paid hype machines that
support them).

By contrast, I'm a trustee of my local rural historical society, and the
whole board agrees computers are a real pain -- although since my career
has involved programming computers starting with a KIM-1, my reasons for
agreeing with that sentiment are mostly somewhat different than most of
the other trustees' reasons. :-) From a historical perspective, it's not
even clear any of these applications you list or many others have made
our lives much better compared to face-to-face interactions (including
eating meals together) than they have often displaced. They are for the
most part all optional and can be done in multiple ways. Email is not
optional today for almost any involved citizen. Every board member, even
one who is over 90 years old, has at least one email account (even if
they may not check them very often).

I predict that in ten years, all my local historical society's board
members will still have an email account (or equivalent, if peer-to-peer
email etc. improves fundamentally), and each of those three services you
mentioned will be long forgotten and replaced by some new similar
service (or via an improved email or IRC system).

Of course, as Alan Kay says, the best way to predict the future is to
invent it. On and off, something better is what I and many others been
working towards for many years with hopes for creating something like a

"social semantic desktop". I'd suggest Mozilla consider innovating in
that area as well, such as by bringing web technologies to the local
desktop (as with creating a new Thunderbird server version to replace a
hard-to-maintain Thunderbird desktop version).

> As advocates of open source or public benefit, and / or
> standards-based interoperability we have a lot of work to do here. I
> do not believe an email centric client like Thunderbird is going to
> win these people back to the old model. Mozilla needs to lead in the
> new model.

Thunderbird's current implementation is hard to maintain. Why is that?
Looking at the codebase for the first time yesterday, about 95% of the
Mozilla communications codebase (literally more than a gigabyte of
source) has nothing to do with the communications task as it is a copy
of Firefox (yet, that copy must be kept in sync with a mainline Firefox,
that essentially does not care about downstream breakage, for security
reasons). C++ is a terrible choice today for an application where speed
or low-level control is not a significant issue (and they are not for
Thunderbird). XUL is on its way out. You made these points more
indirectly in your original post to this thread. So, yes, the bathwater
(the Thunderbird implementation) needs to be thrown out sooner or later.
But the baby, email (or more generally, peer-to-peer data exchange of
locally stored data), as well as the existing Thunderbird developers and
users, should not be thrown out with the bathwater.

Yes, Mozilla should lead in the "new model". But what is the new model?
And what should it be? And is the new model "the internet" or is it just

"the web"?

For a while, Firefox OS was the shiny new model (even with a huge chorus
of people pointing out a landscape littered with mobile phone failures).
But now Mozilla is starting to back away from that Firefox OS model
after watching Firefox desktop get starved for resources and seeing
Firefox OS get little traction in the cell phone market (as many
predicted).

Especially, should the new model be more centralized and
client-to-server and proprietary or more decentralized and peer-to-peer
and FOSS? I'd argue decentralized and peer-to-peer and FOSS is more
democratic and more resilient. Mozilla could still perhaps win big in
the mobile space by making peer-to-peer FOSS apps for all mobile
platforms that interoperate with the desktop and relay servers. Such
mobile apps, built for Android and iOS with web technologies, but
operating via "the internet" than "the web", could still produce a huge
positive benefit for connecting people and supporting small groups in
our society. As Margaret Mead said, "Never doubt that a small group of
thoughtful, committed citizens can change the world. Indeed, it is the
only thing that ever has." Such apps to support such small ad-hoc groups
could even be called "Thunderbird" apps.

> Mozilla has both the opportunity and the challenge to have impact at
> a large scale. I'm serious about the challenge part. It's hard to
> do of course. But the challenge I mean here is that there are plenty
> of good open source projects that one wants to see succeed that don't
> make sense to integrate into mozilla build or technology
> infrastructure. I recognize this is painful for Thunderbird, which
> is partially integrated now.

The above statistics say there are about four billion email accounts,
three billion instant messaging (IM) accounts, and three billion social
media accounts globally -- or about ten billion accounts in total in the
world. So, from one point of view, maybe this suggests Mozilla should be
spending about 70% of its budget on supporting better email and instant
messaging to have a proportional impact at a large scale on the internet
(as opposed to just "the web")? :-)

What percentage of Mozilla's budget does it actually spend on supporting
those two types of accounts (email and IM)? Maybe one percent if that?
How is that justified?

As above, yes, please throw away the Thunderbird implementation as soon
as is reasonably possible. :-) Even the remaining maintainers will
probably cheer! :-) Who wants to spend all their time mostly just
dealing with breaking changes from an underlying HTML rendering engine
not designed to have stable APIs instead of improving an important
application? But don't throw away the developers or the user community.
Let's just take the essence of Thunderbird and put it on modern web
technologies (JavaScript, HTML, CSS, and DOM). And let's have a clear
path forward for existing Thunderbird users.

A way forward, suggested in September by Kent James (and later reprised
by me, not knowing then of his earlier suggestion) is for Mozilla to
create a locally installable Thunderbird Server that provides
peer-to-peer communications services accessible through a webapp or
possibly other clients as well. These services could include email, IRC,
news group reading, RSS feed reading, notifications, and also a variety
of other services via plugins (audio, video, whiteboarding, note taking,
web page archiving, structured arguments, IBIS diagramming, file
sharing, and more). Initially that server could be on Node.js, with the
hope that Firefox itself could host that as a plugin at some point. Such
an approach could also be adapted to create Android and iOS Thunderbird
mobile apps as well, although ideally the Thunderbird Server webapp
would run well in Firefox mobile (or Firefox should be improved until
that was the case).

The direct cost of such an effort initially would probably be
(guesstimating) about a million US dollars, as it would probably take
about a year for seven developers building on existing JavaScript
libraries for email handling and other peer-to-peer communications and
custom service interactions. Or about 1/20000 of what went into those
three apps you mentioned. The results would be Mozilla empowering users
to store data locally and share it peer-to-peer across the internet --
as well as a whole new industry of web hosts supporting this same email
system for users who want someone else to do backups and keep up with
patches and security issue. That is clearly within the mandate of making
the web a better place. And it clearly just a tiny fraction (less than
one percent) of Mozilla's annual budget.

Such an effort would provide a huge incentive to improve Firefox to
support use in new ways (including easily displaying untrusted content
securely in webapps, and supporting custom desktop apps in the same way
Chromium does without requiring people write them using XUL). Firefox
has emulated Chromium recently in all kinds of ways that many people
have complained endlessly about, yet in this essential way of supporting
easy embedding into desktop apps that any Firefox aficionado would
approve of, Mozilla has lagged behind.

Beyond the value of such a communications platform itself, if Mozilla
had prioritized this need to improve Thunderbird four years ago, Mozilla
might have improved the Firefox platform in ways that helped keep up its
market share up because Thunderbird was showing a need that became
Electron and Phonegap and other similar software. Then
open-source-friendly companies like Automattic might not be turning to
Electron/Chromium for creating a desktop WordPress/Calypso app instead
of using the Firefox platform. In fact, if Mozilla has done such a
thing, is it possible that much of the time and money and attention that
has gone into WhatsApp, Viber, Line, etc. might have gone into an
enhanced Mozilla Thunderbird and Firefox instead? Maybe then Firefox
market's share and Mozilla's revenues might have even expanded rather
than contracted? Instead, by ignoring the needs of Thunderbird and the
internet users it serves, by not trying to grow in that area, Mozilla
missed a huge business opportunity.

It's too late to change the past, but we can think about improving the
future. One issue may just be that Mozilla has a fundamental conflict of
interest between supporting access to proprietary
mostly-advertising-supported web sites (Firefox) and making them less
necessary (Thunderbird)? That's a difficult issue to think through.
Within a capitalist society, there is a lot of money to be made by
privatizing gains (usually by centralizing systems), socializing costs
and risks (including the social cost of harming face-to-face community),
and creating barriers to entry (including by disempowering users and
reducing their options for switching services when possible). Many web
services fit that model (although rare exceptions like Craigslist buck
that model with their focus on helping users get together locally). By
contrast, socializing gains, privatizing costs and risks, and empowering
users is traditionally what charities or governments do.

So, there is lots of money available to tell people how important
centralized proprietary systems are (even when they really are not).
There is little money to tell people how important decentralized open
systems are (even when they really are). I'm writing this email staying
up to 5:30am local time when I should be sleeping, and I'm sure those
three companies you mentioned could instead put 100 people working 9-5
for months to convince you the ideas in here are stupid. :-) Even if
they probably won't, on the assumption this will just be mostly ignored.
Perhaps the same thing might happen with different groups if I was vocal
enough about broccoli being generally healthier than candy? :-)

Thunderbird is something really different from a typical web startup by
empowering users to manage their own data. The problem is, for
Thunderbird, as with other FOSS applications, it is hard to find a big
source of revenue empowering users with free software. And it is very
hard for people to maintain complex software and support a large user
community when they have a separate day job (it can even hard when it is
your day job). Selling access to eyeballs is just more profitable -- but
that does not make that more important in a democracy. Ideally,
governments and foundations interested in promoting democracy would be
pouring billions of dollars year into peer-to-peer research and an even
better Thunderbird, but instead we get more draconian copyright laws
where people (in theory) face more jail time for sharing music than for
committing murder and also lots of funny commercials on how wonderful it
is to use proprietary services and related potential spyware. Mozilla is
caught in the middle of that socioeconomic situation.

There are around half a billion Firefox users globally, but only about
ten million Thunderbird users (so the Thunderbird user base is about 2%
of FireFox's user base). Mozilla makes most of its revenue from
partnerships with big companies related to advertising (especially for a
default search engine); so there is indeed no large short-term business
reason for Mozilla to spend any significant part of that revenue on
something like Thunderbird in itself. But even 2% of the Yahoo US$300
million a year would be US$6 million a year, which is a lot more than I
suggest a project to create a Thunderbird Server would cost if run well.

It's also not clear how Thunderbird, even a server version, would ever
bring in significant revenue (beyond a search engine partnership or
other advertising). Thunderbird is a bit like Craigslist in that sense
-- it can help millions live better lives in a clutter-free way if it
stays modest, but most of those users won't ever appreciate the
technical effort and personal generosity that went into all that.
Ideally some foundation would pour millions (or even billions) of US
dollars into a new Thunderbird just because it is the right thing to do
(while also funding other great FOSS webmail systems out there like
Roundcube or mailpile to provide a diversity of implementations). I
feel, historically, that foundation should be Mozilla as far as
Thunderbird goes, and Firefox would also indirectly benefit from it.
Still, maybe politically from a short-term business perspective,
Thunderbird should better find a new home -- maybe it should just go
somewhere it is really wanted even just for community morale reasons?

Frankly, as I see it, if you look at the adoption trends, and consider
the rapid rise of Slack, between Firefox and Thunderbird, an expanded
Thunderbird is actually the more viable product concept long-term. :-)
But I am sorry to have to say that as a long-time Firefox user. :-(As a
supporting example, after a couple of failed tries with Firefox, I had
to use Chrome just to send in a job application via Jobvite as the
submit button did not work correctly with Firefox and
selectively-enabled NoScript options (it just ate the entire application
as it reset the form). So, I eventually had to use Chrome to apply to
Mozilla earlier this week for a Growth Engineer job. :-(And I'm finding
I need to use Chrome to upload things to GitHub and Workable as well.
Meanwhile, applying for jobs via Thunderbird still works as well as
always. :-) Those are just a couple anecdotal data points; I can hope
they do not really reflect a permanent trend.

The key reason for Mozilla not wanting Thunderbird and seeing it as a "tax" is not,
as above, that email and IM and other peer-to-peer and
local file storage are not essential to the internet and even the web.
They are essential.

The key reason is not that Thunderbird is drowning in technical debt and
needs a complete refresh. Lots of apps need complete overhauls from
bitrot now and then. Like G. K. Chesterton said: "All conservatism is
based upon the idea that if you leave things alone you leave them as
they are. But you do not. If you leave a thing alone you leave it to a
torrent of change. If you leave a white post alone it will soon be a
black post. If you particularly want it to be white you must be always
painting it again; that is, you must be always having a revolution.
Briefly, if you want the old white post you must have a new white post."

As above, companies are willing to spend *billions* of dollars to get
software that works. For many, a million dollars would be
next-to-nothing. Even for Mozilla, it's not much.

The real key reason and deeper issue is just that empowering internet
users is not a very profitable part of "the web". It is hard to swim
agains a tide of social recession that (web) capitalism can create.

In a different sort of world, there would be a bunch of well-funded
people eager and able to take on the challenge that Joshua Cranmer laid
out a dozen hours ago on the tb-planning email list (Fri Dec 11 16:08:08
UTC 2015, Why we need Gecko updates) of finding commonalities across
email application libraries -- with so far no replies. He wrote: "Having
talked with both the Gaia email and the emailjs.org people, I've more or
less gotten people to agree on some of the changes to be made, but I've
lacked any time to actually develop those changes. If people can spare
some time, fleshing out the email-socket library and hooking up
smtpclient and email-sasl to that would open the doors to being able to
share some more code between various email projects." That is amazing
progress -- if there were more cycles to help him. But those cycles
mostly go to Slack, WhatsApp, Viber, Line, etc..

And also, Mozilla has just not in the past culturally emphasized
supporting those seven billion accounts (email and IM, 70% of the total)
by writing breakthrough new software to support those activities well.
That cultural bias to ignore the less visible part of the internet is
perhaps one reason proprietary solutions like those three examples you
provided and even now Slack have proliferated in that instant messaging
void. That is why the funds for up to a million FOSS developer years
have instead gone to forge shackles instead of keys. If Mozilla had
poured a tiny fraction of the money that went into Firefox OS into
re-envisioning Thunderbird, maybe FOSS developer Automattic would not
have recently embraced a proprietary Slack as the way to store a lot of
potentially sensitive information (including job interviews) at a
potential major competitor in the internet communications space. And
maybe Mozilla Governance might not be hosting its email list on Google
Groups (where, to begin with, there is no easy way to get all the
archives in mbox format).

So, given the confused Mozilla mission statement, and given current web
economic realities, it's hard to disagree that it makes short-term
business sense for Mozilla-as-it-is to continue to defund Thunderbird
and throw it away (maybe hoping someone else funds it, which indeed
might happen). It is mainly just bad for democracy not to have tools
like Thunderbird and to have no one who seriously promotes them. And in
the long term, it might be bad for Firefox to not be co-evolving with
tools for email and IM and other more peer-to-peer real-time activities
(like white-boarding) that an enhanced Thunderbird Server could provide.

 Update: 2015-12-12 again, with Thunderbird server / Twirlip sprint agenda

Below is an ambitious "hard fun" agenda I am pursuing over the next week
with user stories and task to create a proof-of-concept for a Thunderbird Server application along
the lines of the "ThunderbirdS are Grow!" manifesto. The hope is that by
the end of the week the entire system will work well enough to actually
be useable directly (if no doubt painfully) by a development team to
discuss further improvements of that software in a bootstrapping
(Engelbart) way towards becoming a "social semantic desktop".
Goals include reading and annotating RSS feeds, IRC chat messages,
and Thunderbird and pipermail archives; receiving POP3 email and sending email
via SMTP; and supporting creating and editing wiki pages and IBIS diagrams
via sending structured emails composed by plugins. If the sprint goes according to plan (and things rarely do)
hopefully this next Thursday I will be able to send an email to this tb-planning list from the resulting application. :-)

As I said, it is an ambitious agenda, but not quite as impossible as it may seem at first
given I've just spent a year making a single page FOSS webapp and have also written some other
code that I can draw from. Of course the UX is going to be simple and ugly, but hopefully it will prove the concept anyway.

Even if that project goes no further than a one week sprint, it
hopefully will be something people on the tb-planning list could point
to that implements Kent James' suggestion from September (however
pitifully) when discussing what might be possible for a more serious
project with broad community support. That way, people without webapp
experience could see what might be possible by looking at some
screenshots from real software (and maybe a demo video eventually).

Because this is not an official Mozilla project, I'm calling it Twirlip
and not Thunderbird (not wanting to get into legal trouble with Mozilla
for trademark infringement or to cause any confusion with Thunderbird
Desktop users). I've used that Twirlip name for previous information
management experiments, and I feel it fits this as well, even if the
focus is a bit different this time by putting email at the center of
things. By coincidence, the "T" in Twirlip can be seen to stand for "Thunderbird". :-)
However, the project obviously could be renamed to
Thunderbird Server or whatever if the project's status with Mozilla
changed down the road (unlikely, but who knows) or with whoever ends up
controlling the Thunderbird trademark after a spinoff. And as the
project is under the MPL 2, Mozilla or anyone else could fork it and
give it a new name they liked better.

If I had more time, I'd have involved people on the tb-planning list in planning
this sprint, rather than just forge ahead without substantial
discussion. Sorry for not doing that, as I'm sure the plan would be a
lot better with feedback from people from the tb-planning list. Reading through the
tb-planning archives, you all seem like a really great (if busy) bunch
of people. Also, sometimes you just have to "code first and ask
questions later" in an agile way (so, small coding steps), to get good
feedback given an all too common "failure of the imagination". :-)

Below is the sprint plan, initial architectural choices, my motivations
for doing it, a long-term invitation to collaborate down the road if
this first sprint produces some good results, an explanation of why the
plan is broad but shallow, and some other contextual information -- including
at least one very good reason I should not be doing this proof of concept project. :-)

The project can be found on GitHub, but not much to see there yet beyond
the MPL 2 license file and the agenda that is outlined below:
https://github.com/pdfernhout/Twirlip2

Wish me luck! :-)

--Paul Fernhout

Day-by-day user stories and tasks for Thunderbird Server / Twirlip

Saturday/Sunday:

User stories:

* As a project owner, I need an initial project plan to develop a

proof-of-concept of a Thunderbird Server to help others imagine what is
possible.

* As a project owner, I need a GitHub site so project developers can

share code.

* As a developer, I need a basic infrastructure so I can collaborate

with others to developers to create and test great software.

Tasks:

* DONE Write up this document.

* DONE Set up GitHub project (https://github.com/pdfernhout/Twirlip2)

* Create initial project package

* Make initial decision about file format for backend

* Create initial project build script

* Pick unit testing framework for client

* Pick unit testing framework for server

* Have Node.js host a webapp that displays "Hello World" or similar with

Mithril

* Verify the results of the hello world display as a test

* Create code to store immutable data in file system

* Create initial unit test for server that then stores and retrieves

immutable data from the local file system

* BACKLOG Hooking up tests and build script to a continuous integration

build server (would be nice, but that CI part is probably not gonna
happen this week by me)

Monday

User stories:

* As a user, I want to read project feeds so I can know what is going on

with specific projects of interest.

* As a user, I want to annotate feed information I am reading so I can

take further action on it later.

Tasks:

* Read basic RSS feeds into local storage

* Display feeds in a single-page webapp that uses JSON to retrieve data

from Node.js

* Support annotating specific items with text strings

* Support searching for items with specific text strings

* Support searching annotations with specific text strings

* Unit tests for each of the above (ideally written beforehand)

Tuesday

User stories:

* As a user, I want to chat with other users so I can work as part of a

team.

* As a user, I want to make local notes on what other users chat about

so I can take action on them later.

Tasks:

* Create chat client to post and receive messages from IRC

* Store IRC messages locally

* Support searching an archive of chat messages locally

* Support annotating chat messages locally with a string (like for

further action)

* Use socket.io for real-time notifications to refresh the webapp GUI

* Unit tests for each of the above (ideally written beforehand)

Wednesday

User stories:

* As a user, I want to be able to display existing email archives so I

can understand what is going on in projects.

* As a user I want to make local notes on prior email discussions so

that I can remember thoughts about them, plan actions based on them, or
create summaries or outlines.

Tasks:

* Read existing Thunderbird mbox archives and store them locally

* BACKLOG Read emails from an IMAP account

* Read existing pipermail web archives and store them locally

* Displaying stored emails in a minimal way

* Support very simple exact text searching through stored emails

* Support annotations for stored emails

* Support overlays on top of existing messages with summaries or

outlines or typo fixes

* At a minimum as a test case, the application should be able to read

and display the tb-planning email list from pointing it here:
https://mail.mozilla.org/pipermail/tb-planning/

* Unit tests for each of the above (ideally written beforehand)

Thursday

User stories:

* As a user, I want to be able to send and receive plain text emails and

display simple HTML emails safely so I can exchange information with
other users.

* As a user, I want to be able to use this system alongside an existing

Thunderbird Desktop install so that I can feel confident even if this
system fails that I can just use Thunderbird Desktop

Tasks:

* Create GUI for adding information about email POP3 accounts

* Read emails from a POP3 account (without deleting them!)

* Provide configuration instructions for Thunderbird users on how to

leave POP3 email on the server for a few days after reading so this
application can also pick them up (or do the next task)

* BACKLOG Read new emails from an IMAP account

* Make it easy for this system to quickly read new mail from a

* Support composing new emails in the webapp

* Support saving drafts of new emails without sending them

* Create GUI for defining basic SMTP information

* Send plain text email messages via SMTP

* Make first post to tb-planning sent from the application

* Read new tb-planning post either from a local Thunderbird mbox or by

reloading the pipermail archive.

* Unit tests for each of the above (ideally written beforehand)

Friday

User stories:

* As a user, I want to be able to send all the annotations I made

locally in previous steps to others so they can review and comment on
them and send back revisions.

* As a user, I want to create a wiki that other users can read and

improve with versioning so we can work together as a team.

* As a user, I want to be able to make, share, and collaboratively edit

Issue-Based Information System (IBIS) diagrams so I can work with others
to understand complex situations.

Tasks:

* Create a module to send and receive annotations via email messages

* Send and receive email messages defining a triple store

* Create a module to interpret that triple store to define a wiki and

send wiki-related triple store messages to support updating the wiki

* Create a mailing list with a pipermail archive (or similar readable

archive) for this project which can support wiki interactions

* Put this document into the wiki by sending email about it to the new list

* Create a module to interpret that triple store as an IBIS map

(inspired by Compendium) and support editing of it in 2D

* Create screenshots and put them on GitHub

* BACKLOG Implement other plugin modules to support making lists of to

do items or user stories (like in this email), creating shared
calendars, creating shared address books, using a virtual shared
hierarchical file repository, creating and editing free form notes,
creating and editing a spreadsheet of numbers and formulas in
JavaScript, using 2D whiteboards, using 2D clustering diagrams, and/or
sharing 3D objects.

* BACKLOG Support doing the same via IRC and RSS using a common

infrastructure if time permits

* Unit tests for each of the above (ideally written beforehand)

The results of all of these tasks will be very crude as far as UX but
should be minimally useable for the tasks outlined. Ideally the
resulting application should work well enough that current Thunderbird
users with POP3 accounts with very basic email needs could switch to it
as their primary email client and only use Thunderbird desktop only for
more specialized cases (not without some pain and loss of functionality,
of course). So, this first week will create a minimal "eat our own dog
food" base that could be improved upon by a team using this exact tool
over the next year to discuss and plan how to make something really
awesome. :-)

Architecture and other project information

License: MPL 2 for now. I'm open to perhaps changing that to Apache or
maybe something else based on feedback if someone made a case for that
soon. I don't especially know what is best here, and have tended to use
GPL for previous large projects and MIT/BSD for smaller ones. Mozilla
says Apache 2 is acceptable for new projects, but still seems to suggest
MPL 2 for product code: https://www.mozilla.org/en-US/MPL/license-policy/

Storage: The system will work with immutable stored data when possible
for reliability (with copies of archives being made if compaction of
deleted data from files is desired, like with Thunderbird currently
does). For that reason, the mutable mbox format Thunderbird uses can't
be used as-is, because a character in mbox files for each message is
changed to indicate flags. A file format that stores data incrementally
will be used. This could either be some improvement to mbox to make it
immutable but still support flagging items (as as read, deleted,
important, etc.). Or, it could be very different as with CouchDB (looks
like versioned documents) or recent Pointrel versions (storing JSON for
each message that represents a change, either in separate files or in
big files or segments of big virtual files). Eventually, to avoid
archiving spam, a short-term staging area could be use for incoming
messages, where only some get copied to a more permanent long-term
archive (a bit like maildir). The storage system should be pluggable, so
the initial decision of backend should be changeable. I'm open to using
an existing Node.js module for this backend if that makes sense, as long
as the data was immutable. But I feel flat files plus sqlite for
indexing are probably the best way to go at first.

Webapp: The GUI will be Mithril because I know it and like it and it is
simple to pick up and understand. TypeScript will be used for the webapp
code. I will borrow from the NarraFirma project which used those
technologies as needed (NarraFirma is GPLv2 but I am willing to
re-license such tangential borrowings under the project's MPL2 license).
The GUI should have pluggable modules eventually. BTW, I explain some
reasons why I prefer Mithril over the more currently well-known React here:

http://buytaert.net/comment/120741#comment-120741

Server: The server will be Node.js because I know it and like it and it
has a lot of basic email handling support. TypeScript will be used
eventually on the server, but for this first week sprint, I'll stick
with JavaScript on the server. Eventually such server code should
ideally run under Firefox directly. The server modules should be
pluggable too eventually.

Webapp-to-server communications: As with NarraFirma, all communications
(aside from module loading) will be done via JSON to specify what data
the webapp wants from the server and for the server to send back a response.

Plugin architecture: Just gonna wing it using JavaScript modules and
some adhoc API... :-)

Trademark: Since this project has no official approval, it can't be
called Thunderbird Server. So, I'm calling it "Twirlip" because I
already have Vernor Vinge's approval from years ago to use that term for
information management software -- the term comes from his book "A Fire
Upon the Deep". :-) In this context, "Twirlip" could be seen to stand
for: "Thunderbird Wholistic Information Resource Linking Integrated
Platform". For now, I'm keeping Twirlip as a trademark I control myself.
If Mozilla really wanted to support such a project, trademark ownership
might be a non-issue as the project would probably then be called
Thunderbird, or we could talk about Mozilla controlling the Twirlip
trademark if it was used in a way to identify the sort of broad platform
I've defined here and elsewhere, such as:

http://pdfernhout.net/thunderbirds-are-grow-manifesto.html

Thanks and pull-requests welcome

In a way, I've been preparing for the next week for the last thirty-five
years. :-) I've essentially been thinking about it fairly directly for
about over decade on-and-off (even the idea of using email to define
concept maps and such by extracting triples from emailed attachments or
the body text). And such an ambitious agenda would not be (potentially)
feasible without all the years of hard work a lot of other people have
put into to creating the basic software components needed here (Node.js,
Firefox, mail libraries, Mithril, etc.). It would also not be feasible
in such a short time without my having written the FOSS NarraFirma
webapp first and so having solved some issues that otherwise might vex
me for weeks on ends (like rendering a limited subset of HTML safely,
implementing a client-side triplestore, choosing languages like
TypeScript, handling dialogs, providing toast notifications, making
choices of other supporting libraries such as for server authentication,
previous experiments with socket.io, and so on). And I have a lot of
previous code to draw from on GitHub (like for IBIS diagrams). So, this
project is hopefully going to bring together a lot of stuff in my life
into a coherent whole. This would easily be a many-month-long project if
I had not done all that preparation already.

And if you see I'm making progress down the road, feel free to submit
pull requests for improved functionality for backlog items or all the
many, many things the plan above does not include (to begin with,
plugins to integrate with WordPress sites for reading and writing blogs,
plugins to integrate with third-party proprietary services like Twitter,
end-to-end encryption, composing emails in HTML, alternative
conversational interfaces to improve a11y, complex content searches
including with prepared indexes, markdown support, improved display of
sortable lists of emails by having special server indexes,
archiving web pages and displaying them in subdomains, acting as a proxy, and on and
on). Anyone is welcome to join me constructively under the terms of the
license sooner, but I doubt anyone will until you see significant
working results after a week or more (and it may be hard to sync up at
first, which might even slow this one week down but otherwise would be
good to do long-term). I would not join such a project myself at the
start either having seen so many people and projects not deliver, so no
hard feelings. :-) Nor would I probably believe it was possible in such
a short time. :-) The internet is littered with failed projects (and
this may indeed become another one) and unfulfilled overly ambitious
promises, so there is no real reason to expect this to be any different
all things being equal. Also, people on the tb-planning list already have a lot of
commitments to supporting other very good stuff (especially Thunderbird
Desktop as-it-is which about ten million people rely on). So, I know
there are few spare cycles here.

I appreciate people here being an audience though; thanks for that. :-)
In the children's book "Mike Mulligan and his Steam Shovel", Mike and
his steam shovel dig faster the more people watch (which tends to be the
case for experienced workers, whereas novices tend to crumble in front
of an audience). So, as with Mike Mulligan, just by just being on this
tb-planning list, you are helping me do more and better work and make
progress to towards the Thursday goal of sending an email to the tb-planning list
from the ThunderbirdServer/Twirlip webapp. :-) Given "Software is Hard"

it is quite possible this effort will fail for all sorts of reasons. So,
I too have my doubts, just like Mike Mulligan himself did. :-) That's
the nature of software development. But at least this project will "fail
fast" given this agile agenda, and hopefully even a failure might inform
future attempts by others.

What I might get out of this myself

I absolutely should not be doing this myself as my wife is going to be *very* cross
with me when she finds out I'm doing this to take a week
off instead of continuing to look for paying work to stave off impending
financial doom related to a year spent developing our FOSS NarraFirma
webapp. :-) As Mozilla already rejected my job application to do such
work as a Growth Engineer, this effort is obviously not going to go
anywhere financially that way. That is why I'm planning to ask her for
forgiveness and not permission. :-) Then afterwards I'll stop
procrastinating with projects like this and go get some "real" paying
job somewhere propping up a proprietary status quo again (as I did with
NBCUniversal for 2.5 years previously and so earned the cash/credit to
write NarraFirma and even coast a little into this smaller project).
Still, hopefully, a small success with this project will add to my
webapp portfolio though and so make it easier to find a interesting job
(once I lower my expectations from doing FOSS stuff). So, this project
is not complete procrastination -- while still doing what I want to do
anyway having gotten excited about Thunderbird Server. Seeing Kent
James' earlier proposal about a Thunderbird server/webapp idea at least
gives me some confidence this is not a completely useless idea; I
probably would not be trying this if I had not seen someone else here
thought some variant of such an idea was worth considering as a way
forward. Thanks, Kent! :-)

And who knows, there is some tiny chance that maybe some organization
other than Mozilla like that p≡p foundation in Switzerland mentioned by
Ben Bucksch might see the proof-of-concept and think it is worth helping
it move forward into something better? Related:
https://pep.foundation/blog/thunderbird-is-endangered-and-needs-new-wings/index.html

"With the p≡p project, it is set to finally deliver free software for
what the cypher-punk movement has been striving for since the late
1980s: Easy Encryption for Everyone!"

Still, what I wrote at the next link about the limits of encryption
might not endear me to such a foundation. :-) Even as I feel encryption
can be useful same as locks on houses, I feel it important for people to
understand that encryption is not some magic shield protecting anyone
from government, just the same as a team of police officers would make
short work of almost any house door (or window) if they really want to
get in. These days, you have to assume all your systems are compromised
by multiple actors and always will be, and then go from there to build
the best life you can given that -- either that or maybe I just watched
to many "The Prisoner" episodes as a kid. :-)

http://www.pdfernhout.net/why-encryption-use-is-problematical-when-advocating-for-social-change.html

So, it's also a financial gamble for me in that sense -- very low odds
of success financially, but possibly a high payoff of a good job. :-) At
least, that is how I will try to spin this project to my wife when I
eventually talk to her about it. :-)

But mostly I'm just doing the project because I think it will be fun and
worthwhile and I want to use the result. I've been trying to find a good
FOSS job for about six weeks and it is nice to take a break for a week
from the job search before I lower my expectations for a next round of
applications to proprietary places. As I mentioned in a post currently
pending in the moderation queue at Mozilla Governance (and copied to the
end of the Thunderbirds are Grow! manifesto), proprietary companies have
tons of money to pour into privatizing gains and socializing costs (e.g.
WhatsApp and Slack) and hiring full-time programmers to help them do
that (typically by centralizing information and creating vendor lock
in). While governments and foundations should be funding more work like
this, they often don't for all sorts of reasons. In Mozilla's case, I
think that is due in part to a fundamental confusion in the mission
statement between supporting a whole ("the internet") and a part ("the
web"). Peer-to-peer is a big part of the internet, and email is the real
peer-to-peer success story (even if most email goes through relay
servers). So, through a failure of collective social imagination, we see
essentially the same money that could go into funding millions of
person-years of FOSS development supporting privacy and freedom on the
internet instead go into funding proprietary development supporting
surveillance and constraints by the nature of how our current
socioeconomic system works. Sad, but at least there are some small
things one can do now and then as an independent here and there to help
make a difference, including in this case, provide a proof-of-concept to
think about. Hopefully this effort will help more than just waste
valuable limited time of people here to read about it.

That all means that after a week full-time, it is most likely that this
project will become, at best, something I can only put a couple of hours
a week into as a hobby, like to merge in pull requests now and then. Or
I might fix specific issues if I feel brave enough to start using it
myself for all my own email instead of relying on Thunderbird Desktop
most of the time. That is my hope that it works well enough to do that,
but after a week I'll have to evaluate how realistic that is given how
much I depend on reliable email and Thunderbird desktop. Part of the
design goals above are to be able to run this system in parallel with a
working Thunderbird install though, so I hope that may lower the bar of
reliability enough that I could use Twirlip for things like writing this
sort of email. For me, that would be a big win, to be using something I
helped write to process my most core data (email). I've been toying with
that idea for years, of software that could read my Thunderbird archives
and do something with them, and this is finally a chance to turn those
ideas into action.

Why not a more realistic agenda?

This agenda perhaps should realistically be six weeks of work where each
day here becomes a week-long sprint involving multiple developers where
the whole planning process involves feedback from other developers here
and the user community, especially in the creation of user stories. That
would make such a project more true to the spirit of Thunderbird and its
community of developers an no doubt would go beyond what I can provide
myself (even as a long-time Thunderbird user, but one who has mostly
avoided plugins and so has a narrower view than some). Not having that
time luxury at this point though, I'll still do what I can where I can
given a week-long timebox. While it might otherwise might make sense to
spend a full week if I have that on just one of these days projects and
do it better, without doing every phase of this agenda even in an
abbreviated way, the results would not reflect the breadth of the
proof-of-concept I have in mind. With a more limited approach, people
would then just reasonable say, "oh that is another RSS feed reader", or

"oh, that is some poorly done email client", or "oh, yet another IBIS
system big whoop", or "I already have a better IRC client", or whatever.
It is putting these modules all together into something that aspires to
be a "social semantic desktop" that is the essence of the big picture
I'm trying to convey. So that is why this first sprint is going to cover
a lot of ground but very shallowly.

As one of my personal heroes, Dan Ingalls, said about the initial coding
of the innovative Smalltalk (in BASIC of all things):
https://jaortega.wordpress.com/2006/01/31/dan-ingalls-videos-on-object-oriented-programming/

"You just do it and it’s done." :-)

This project is an iffy proposition for all sorts of reasons, like if
existing Node.js mail handling and IRC libraries are just too buggy, or
if I get called away from this project for some reason. I'm still hoping
though something usable might be ready in a week if I try hard to do it.
Time will tell.

Even if this specific project accomplishes this agenda in a week, the
project may not go anywhere after that limited success though for all
sorts of reasons. But even a limited success could still be a useful
example for this tb-planning group to think about in terms of what a
real Thunderbird Server project might look like if Mozilla got behind
some future effort. So, I hope this project eventually adds to the
discussion here one way or another.

If I don't respond to any emails about this project anytime soon, it
will hopefully be because I am busy coding. :-)

ThunderbirdS are grow! :-)

--Paul Fernhout

http://www.pdfernhout.net/

The biggest challenge of the 21st century is the irony of technologies
of abundance in the hands of those still thinking in terms of scarcity.

 Update: 2015-12-22 On funding

Responding to: https://mail.mozilla.org/pipermail/tb-planning/2015-December/004318.html

(Still coding away; got stuck in the mud of data storage so it
feels like mbox but is more expandable, but feel like I'm getting some traction now...
Also, one person volunteered to do some QA on it, so social progress!)

Still not ready to send stuff from Twirlip / Thunderbird server
(still working on that), but as I wrote most of this already, I put
together an alternative direction (or parallel direction) to what Kent
wrote. Rambly, sorry, but all I have time for right now.

In general, it agrees with the key points Kent makes (volunteers are not
enough in the current situation). It talks about four types of
transactions (subsistence, gift, exchange, and planned) and the uses
those to consider other alternative funding approaches (essentially,
government and foundations), and provides specific people and groups who
could be contacted in those regards (essentially, Thunderbird users at
national laboratories and foundations, and also Richard Stallman of the
FSF and Michel Bauwens of the P2P foundation). I suggest Mitchell Baker
and Mark Surman (or others) could approach the top 35 funding
foundations looking for (literally) a billion dollars to be put into
peer-to-peer software, including maintaining Thunderbird and also
developing migration paths to new systems.
Part of the approach could be about dealing with "data smog" as well as
ensuring privacy, FOSS, local data, and support for small groups of activists.

In general, the issue is that the current situation of Thunderbird
support has not really grown organically over the last fifteen years or
so, given the Mozilla background. Things changed a lot with the spinout,
and this is all consequences of it. I had not really been paying
attention myself much to it until Mitchell Baker's recent message.
Thunderbird has just always worked well, although with a few bugs and
awkwardnesses here and there I've managed to live with. But that message
has brought what is essentially an ongoing (if slow moving) crisis into
people's attention. Still, a crisis can be both a danger and and
opportunity.

So, this is my own spin on: "What can be done to get some attention on
this for that bug and many others?" I wrote this as a long email in Thunderbird, but as people often
complain about long emails, I put the rest on my website at the end of
the "ThunderbirdS Are Grow!" manifesto.

http://pdfernhout.net/thunderbirds-are-grow-manifesto.html

I can post it directly to the tb-plannning list if people wanted.

Back to coding... :-)

--Paul Fernhout

Background on four types of exchange

Essentially, there are at least four major positive types of economic
transactions in our society: subsistence, gift, exchange, and planned. A
health economy needs all four of those. In the USA, over the past thirty
years, the balance has shifted heavily to exchange. Now, in general,
every software developer needs money to live in the USA. That does not
mean software developers need to be "rewarded" for doing specific
software development (that may even reduce output as Dan Pink talks
about like in an RSA animate video on motivation, or Alfie Kohn talks
about in "Punished by Rewards"). But it is hard to function in US
society without some for of income (or a spouse or parent or relative
who otherwise provides that, like Linus Torvalds starting Linux as a
student). A "basic income" in the USA would help with that to
acknowledge social equity and also the value of participation in
non-exchange transactions, but the USA is not there socially yet,
although some other countries are progressing.

Let's consider these four types of transactions in a Thunderbird context.

Subsistence: people fix bugs they care about or add new features they
care about to their local copies.

Gift: People share their bug fixes, fixes for other people's bugs, and
create and share new features other people want. People (not necessarily
Thunderbird users) also give money to groups that maintain Thunderbird
so they can continue to exist, and foundations also give money to
Thunderbird maintainers.

Exchange: People fix bugs and add new features other people pay them to
fix and add -- either in a fine-grained per-bug and per-feature bounty,
or in a more coarse-grained way, like funding a collective of such
developers who have some accountability somehow to the funders. That
essentially seems to be what Kent is proposing here?

Planned: Government employees keep Thunderbird working as their day-job.
The goverment says peer-to-peer is a priority and also funds it either
within goverment labs, by contracts, or by grants.

Things get muddy when these streams get crossed, however they do get
crossed all the time in practice, and that is unavoidable. When
communities are a mix of motivations (not saying that is always bad),
their can be friction between those who focus on sharing gifts and those
who focus on exchanging service and code for money (especially as
proprietary code tends to be proprietary and that creates other issues
in an open source community). That friction may be in every community,
and how it is managed is probably tied to the success or failure of such
social groups.

Licenses can make a difference in that as well (like WordPress' choice
of the GPL means all PHP-side plugins need to come with source and
rights to redistribute it and change it).

There can be fuzzy lines in actions. People may make free software but
also use it to promote a related consulting business (as with our
NarraFirma project). To an extent, even donations to Mozilla can be seen
as people exchanging money for supporting a general group they expect
will deliver.

Since Mozilla has not been delivering much value recently for Firefox
desktop or Thunderbird desktop users, it is natural such users might
withdraw their contributions, even if they still believe in free
software, democracy, privacy, and so on. Of course, Mozilla does other
stuff like Firefox OS, and Webmaker, and more, so people can still find
value in those things. And Mozilla talks about renewing support of
Firefox desktop, so it's a complex topic of what people will fund with
what expectations.

For more details on this general issue of different types of economic
transactions, see this video I made on the topic or see the related PDF
file of the presentation, which is summarized on the main page of my
website.

"Five Interwoven Economies: Subsistence, Gift, Exchange, Planned, and Theft"

https://www.youtube.com/watch?v=4vK-M_e0JoY

Other people can no-doubt build a good case for funding Thunderbird in
some exchange-based ways, and Kent has made such a suggestion. So let me
talk about planned and gift ways here. To be clear, as above, in our
society, this is not to dismiss Kent's suggestion. All these approaches
can potentially co-exist depending on the specifics, the licenses, and
the constraint of limited time to pursue any of them.

Planned funding

My work on Twirlip / Thunderbird Server proof-of-concept and all those
Slashdot comments (collected in a previous post to tb-planning) make me
realize how I've had it so good for such a long time coasting on
Thunderbird and all the hard work of people here. :-) The big innovation
is to figure out how to deliver a free-as-in-freedom email/PIM tool
while still having people support its development. And that is hard.

The US government should fund more open source software in this area,
given it supposedly supports democracy and open source software can be
distributed at little incremental cost. The German government with Kolab
shows what is possible, as does Linagora and work within France.

http://kolab.org/

https://linagora.com/

After I get the Thunderbird Server / Twirlip POC working, I plan to
apply to both of those companies in hopes they might be willing to
support its evolution or integration with their offerings. :-)

The US government does fund some freedom-promoting technology in a
little way through the Open Technology Fund (as part of Radio Free Asia)
who for example recently funded the Briar Project for half-a-million
dollars, and it's not clear to me much more it does yet than Thunderbird
with Enigmail?
https://www.opentech.fund/projects
https://www.opentech.fund/project/briar

I suggest the Thunderbird Council could contact the Open Technology Fund
for a few million dollars of interim development funds for Thunderbird
as-it-is to ensure users in Asia have access to reliable encryption (as
well as it works):
https://www.opentech.fund/

"We love crazy new ideas that really change the Internet freedom
landscape. That said, we support all kinds of projects at different
stages of their life, new or established. Ideal projects fit within one
or more of our main areas of focus below. If you have a project that you
think OTF should support, please let us know and apply today!"

By the way, this is how I feel about encryption though, as a useful
tool, but no panacea for ensuring accountable government, which probably
does not endear me to cypherpunks: :-)

http://www.pdfernhout.net/why-encryption-use-is-problematical-when-advocating-for-social-change.html

I essentially make a point similar to here:

http://www.washingtonsblog.com/2015/04/mcaffee.html

“Encryption Doesn’t Matter In a World Where Anyone Can Plant Software On
Your Phone and See What You’re Seeing”

One of the biggest difficulties with getting the US government to fund
free software is that proprietary vendors are still so powerful they can
lobby against it. That is probably one reason so much work is done for
the government by contractors and universities that retain rights to
what they develop as opposed to work done by US government employees
that (generally, if non-secret) goes into the public domain right away.
That is an implicit consequence of privatizing US government functions.

Still, if the Thunderbird council could locate Thunderbird users at
major government labs, maybe there might be some connection there? Here
are some of those labs as a starting point.
https://en.wikipedia.org/wiki/United_States_Department_of_Energy_national_laboratories

http://www.dhs.gov/science-and-technology/national-federal-laboratories-research-centers

Why the individual volunteer part of the gift economy is
problematical for maintenance of Thunderbird as-it-is

Individual volunteers of course make the Thunderbird project go through
their gifts of time. Whether that is enough depends on complex community
dynamics. Free and open source is a terrific thing for the community;
but in a society built more-and-more around exchange, funding open
source can be problematical. Most of the "successful" business models
around open source tend to be compromised in some way that development
becomes incidental -- by selling installation support, training,
manuals, customization, bug fixes, and so on, which all incentivize
making software that is hard to install, hard to learn, undocumented,
inflexible, and buggy. Even paying per new feature doesn't work that
well as who maintains features or deals with conflicts between them?

Right now, as Andrew (a past Thunderbird maintainer) has repeatedly
said, Thunderbird Desktop is suffering from huge technical debt. It
seems to me the shift from funded development to community development
that is problematical in the face of all that technical debt. Mozilla
has already essentially kissed off Thunderbird Desktop, like any big
corporation that divests itself of a subsidiary burdened with debt to
improve its balance sheet. Basically, Mozilla abandoned the needs of ten
million Mozilla users (Thunderbird users) because it realized it would
be expensive to do something about the situation, and chose to do things
like build Firefox OS and make Firefox look and work like Chrome instead
(and some other smaller worthwhile initiatives like Webmaker). Mozilla
still pays lip service to those users, but is not backing that as a
priority with money for maintainers.

Yet, to do math like Kent has done differently elsewhere about
Thunderbird fundraising, if there was ten dollars from somewhere for
each Thunderbird users each year (US$100 million per year), we would not
be having these kind of discussions -- we'd have other ones. :-)
But, that is not completely unreasonable to expect. It really is not.
All kinds of services get supported at the rate of US$10 per user per
year and more. Consider, for example, taxes that support local
libraries. And from one perspective, what is Thunderbird, in some ways,
but a very local personalized library?

Still, in general, while Thunderbird does what it does well,
technologies and expectations are changing out from under it. Thus my
Chesterton's white posts must all be being painted white again just to
maintain the status quo quote in the "Thunderbirds Are Grow!" manifesto.
Examples of shifting expectations include the increasing preference for
a web technology stack over conventional desktop GUI approaches, a
preference for JavaScript over C++, a preference for accessing messages
from multiple machines including phones, and a desire for integrated
messaging (like the rise of a proprietary Slack demonstrates).

Based on what people here have been saying (or maybe I'm too much
influenced by Kent's comments?), it sounds like the size of the current
Thunderbird community of developers is below some critical mass needed
to sustain the gigabyte-sized Thunderbird codebase for the long-term
given all these challenges (especially when Mozilla cuts over to Servo
at some point). That sounds like the kind of social issue that may just
start to snowball, as bug after bug (like this one) then drives people
to other solutions, and there are then less and less maintainers. And
also, as other solutions get new features (like when the Kolab talk
presenter in a video I linked to elsewhere talked glowingly about
Kontact's ongoing innovation in comparison), then also their will be
user attrition. Still, the reality has been that Thunderbird's user base
has continued to grow -- which shows some kind of hunger for an
alternative to centralized proprietary communication services.

That critical mass might be a lot lower if maintaining Thunderbird was a
lot of fun. But it is the rare programmer who thinks it is fun to slog
through literally a gigabyte of someone else's C++ (and some deprecated
XUL) and fix other people's bugs and track random breakage from an
upstream that plans to pitch the upstream codebase (95% of Thunderbird)
as soon as possible.

It is hard to get programmers involved in projects that are no fun and
also have a questionable future. I'm an example; I'm willing to put time
into envisioning something new about communications with web
technologies (or even adding to something like a WordPress plugin).
However, even knowing C++, or especially knowing C++, I don't want to
wade into a gigabyte of C++ developed by many other developers "for
fun". I've done that kind of work for pay though like at NBCUniversal
(even though it was indeed not that much fun, but the cash us make
NarraFirma and now coast into starting Twirlip / Thunderbird Server).

Of course, some people are willing to support Thunderbird Desktop even
if it is not that much fun in the same way others volunteer at nursing
homes (for the good works and for interacting with other volunteers).
And there are no doubt many wonderful people doing that for Thunderbird
out of the goodness of their hearts. But, just as a social thing, it is
going to be hard to recruit more people to do that, and I expect the
burnout rate for current unpaid maintainers is going to be high. Even
with volunteers, most nursing homes are going to need an income though
and paid staff. And I picked that nursing home analogy, because it seems
like that is, at best, what we are talking about for the current C++/XUL
version of Thunderbird Desktop? We're talking about keeping it on
life-support? Nobody so far seems to be talking about a Kontact-like
resurgence of Thunderbird? Or do I have that wrong?

There way well be ways to get groups interested specifically in keeping
Thunderbird on life-support even with the huge overhang of unpaid
technical debt, where the interest on that debt is eating up any time
volunteers have to do anything in new directions. It remains an
important piece of software to ten million users. But it's a tough sell
as a continued investment, given all that technical debt and those
shifts in technology trends, and also some migration paths (like to
Kontact for Linux users, or to various webmail systems like mailpile or
Kollab and so on for the more technically inclined Mac and Windows users
who are willing to run their own servers).

Essentially, Thunderbird was designed thinking it would be integrated
with Firefox as part of Mozilla, and now that Mozilla has moved on, the
codebase is in a problematical social and technical situation.
Disentangling Thunderbird from Firefox is no doubt possible, but it will
likely be a lot of work, and during the process there will probably be
lots of C++ style bugs and security vulnerabilities. And who is going to
audit all those new changes in C++? More volunteers we don't have?

Support via the foundation part of the gift economy

Still, when you step back a bit, you can see Thunderbird as an example
of essentially a peer-to-peer application. Yes, I know people often use
that term differently, but in essence, ignoring email relay servers,
Thunderbird is a peer-to-peer application, and one of the best and most
reliable in the world. Of course, so are other desktop email clients
like Kontact and so on.

So, I feel the best bet for Thunderbird (and the email space as a whole)
may be to get a big foundation to literally pour a billion US dollars
into the issue of re-imagining peer-to-peer. And then maintaining
Thunderbird and migrating it forward in various ways would fit into that
agenda, or at least, providing a clear and easy upward migration path
for Thunderbird users? Just the other day, I saw a flock of geese going
south for the winter -- birds migrate all the time, why not Thunderbird
users? But hopefully to a better version of Thunderbird. :-)

I'm not kidding about that scale of funding either. :-) A billion
dollars (even a billion dollars a year) is next-to-nothing when you
consider how important communications are in the modern world. It might
take the same amount of effort to get a foundation to invest a billion
dollars as a million dollars. It may even be easier. :-)

The big challenge has been that people think that communications needs
are being satisfied because those billions of dollars a year are being
spent by proprietary companies like Facebook, Google, Yahoo, and now
Slack. It's a complex case to make that a need is not being served when
others can point to billions of (proprietary, centralized) dollars a
year being supposedly spent to serve it. It is kind of like, in the same
way, arguing that obese people who eat a lot are obese because they are
actually malnourished and not eating enough of the right foods (whole
plants, mostly). It's hard to tell sickly obese stressed out people that
their problem is they don't eat enough. :-) Even when it is true. And
the same thing is true for an infosphere that has become deeply polluted
by commercialized "data smog". And it is less and less a percentage of
the internet users who remember what the internet was like in the 1980s
and early 1990s, or the web before mass commercialization.

See:
https://en.wikipedia.org/wiki/Data_Smog

"It is argued that "Just as fat [and sugar / refined grains -- pdf] has
replaced starvation as this nation’s number one dietary concern,
information overload has replaced information scarcity as an important
new emotional, social, and political problem." As per David Lewis, PhD
in psychology, this attempt at consuming the majority of data, the
result is what he calls "information fatigue syndrome." This term refers
to the data smog that we encounter daily that ultimately interferes with
our sleep, concentration, and even affecting our immune systems.
According to clinical psychologist Michelle Weil "the problems stem from
people’s overuse or misuse of technologies and from technology’s
ineffective presentation of information, researchers are finding.""

Even Thunderbird contributes in its own way to that, but at least, with
Thunderbird, you have ways to put in place filters and such to try to
tame that somewhat. And we could hope for even better in years to come.

Yet, smog can be cleaned up with the right funding and right laws and
right attitude. See, for example, Pittsburgh before and after:

http://digital.library.pitt.edu/images/pittsburgh/smokecontrol.html

http://www.theatlantic.com/technology/archive/2013/01/aghast-over-beijings-air-pollution-this-was-pittsburgh-not-that-long-ago/267237/

"Everyone knew that the smoke covering their homes and clothes and trees
was bad. But it made a certain group of people a lot of money. And so
they fought pollution controls. And those people had friends. So, while
the American Academy of Arts and Sciences (granted, a less august
institution back then) declared the health hazards of smoke and wondered
aloud whether corporations should be allowed to produce what it called
such "evil," a Pittsburgh doctor maintained that soot and smoke "only go
throat-deep" and said that fire and smoke "correct atmospheric
impurities." The politics of how this works are pretty simple. The smoke
and the soot are something we recognize now as an externality. A cost of
doing business that the business doesn't have to pay because they can
dump it on society. Chinese citizens and activists and assorted
air-breathers will have to get the polluting companies to internalize
these costs. ..."

So, that is the moral and political case that surrounds the funding of
Thunderbird (and related peer-to-peer software). How do we get funding
for maintaining and improving software that deals with data smog, when a
lot of very wealthy people out there have made a lot of money by
creating data smog, whether spammers or advertisers or proprietary
content creators or others? Even me with this overly long email
(although I've been working towards having software to better handle
such things). :-)

But the resources are there to deal with this data smog / proprietary /
surveillance situation! See this discussion about an article Mark Surman
wrote when he was a Shuttleworth Foundation (so, before Mozilla):

http://news.slashdot.org/story/08/04/20/1313223/is-open-source-the-answer-to-giving

"Mark Surman, Shuttleworth Foundation fellow, writes that open source is
the answer to philanthropy's $55 trillion question: how to spend the
money expected to flow into foundations over the next 25 years. While
others have lashed out at 'Philanthro-Capitalism' — claiming that the
charitable giving of Gates and others simply extends power in the market
to power over society — Surman believes that open source shows the way
to the harmonious yin-yang of business and not-for-profit. Sun,
Microsoft, Cisco, IBM, Yahoo, and Facebook are big backers of Creative
Commons; Mozilla has spawned two for-profits. Open source shows that
philanthropy and business can cohabit and mutually thrive. Indeed,
philanthropy might learn from open source to find new ways to organize
itself for spending that $55 trillion."

Of course, someone like the Gates Foundation is probably not going to
fund a lot of open source software given it's cultural origins it
proprietary software. :-) But, maybe the Open Society Foundation or the
Mellon Foundation or someplace like that might fund such a group?

Until then, I guess smaller amounts could suffice. But really, some
foundation interested in open democracy should be funding open tools for
open democracy. :-) I think such foundations have, like me, just taking
it for granted tools like Thunderbird are always going to be around and
ignoring how they get made and maintained.

As with US national labs, do people know any Thunderbird users at major
foundations? If so, those people could be approached by the Thunderbird
Council (or Mozilla) to get support for a tool the foundation is already
depending on for its internal operations.

You might think Mozilla itself should have been that foundation, but
sadly that does not seem to be the case. After making a related post to
the Mozilla governance list replying to Mitchell Baker, I just keep
thinking though about all the many many billions of dollars that go into
building proprietary shackles (like Slack & WhatsApp) instead of open
source keys (like Jabber and Thunderbird). That post:
https://groups.google.com/d/msg/mozilla.governance/kAyVlhfEcXg/-NST0ZTeCQAJ

Why should billions of dollars not instead go into building new visions
of Thunderbird plus maintaining what we have? Ten million people are
benefiting every day from that work. It is not unreasonable to think
that number might even grow substantially if Thunderbird itself grew in
new ways (like Kent or I outlined with a web emphasis).

So, I wonder if there might be a foundation out there interested in open
democracy that could literally throw a billion US dollars at this issue
of peer-to-peer local systems as an alternative to centralized web apps?
:-)

Mitch Kapor started that with Chandler, which did not work out, but that
does not prove that idea of a great open source PIM tool was bad, even
if the implementation and development team for Chandler did not deliver
on the hopes. A successful Chandler might have helped with data smog in
its own way. (I applied to the Chandler project too, btw, but as with
Mozilla for that Thunderbird job in 2011, I don't recall hearing back.)
As an article about Chandler says, "Software is Hard":

http://gamearchitect.net/Articles/SoftwareIsHard.html

Chandler's main mistake may have been not starting with the things
Thunderbird does and then moving on from there? Once someone is using
something for serious email, it's a serious app because it has serious
stuff in it.

Whatever Mozilla's current trends to diminishing support for local data
as with the Thunderbird spinoff, someone like Richard Stallman at the
FSF gets the issue of liberating individuals through local information
encouraging privacy. And it is what he has been talking about for years.

Related by Richard Stallman:

"Who does that server really serve?"

http://www.gnu.org/philosophy/who-does-that-server-really-serve.en.html

"Digital technology can give you freedom; it can also take your freedom
away. ... If “cloud computing” has a meaning, it is not a way of doing
computing, but rather a way of thinking about computing: a
devil-may-care approach which says, “Don't ask questions. Don't worry
about who controls your computing or who holds your data. Don't check
for a hook hidden inside our service before you swallow it. Trust
companies without hesitation.” In other words, “Be a sucker.” A cloud in
the mind is an obstacle to clear thinking. For the sake of clear
thinking about computing, let's avoid the term “cloud.” ... However, on
a longer time scale, we can create alternatives to using servers. For
instance, we can create a peer-to-peer program through which
collaborators can share data encrypted. The free software community
should develop distributed peer-to-peer replacements for important “web
applications”. ..."

And also related to that theme on Facebook's CEO comments about contempt
for his original users:

http://www.tomsguide.com/us/Facebook-Mark-Zuckerberg-Social-Networking-privacy-security,news-6794.html

In a previous email to tb-planning I suggested someone official
contacting Richard Stallman, because he really appreciates the
combination of Thunderbird as it is and GnuPG via the Thunderbird
Enigmail plugin. If you could stress the urgency of the need to keep
Thunderbird supported even with ongoing trends, maybe you could form a
partnership with the FSF. But the FSF is not a "foundation" despite the
name; it is an advocacy non-profit with no substantial assets (beyond
goodwill). I'm just thinking that link may help somehow in building others.

There have been several other foundations mentioned on this list (e.g.
Document Foundation) as well for homes for Thunderbird. I don't know if
they actually have any assets to fund maintenance and development
themselves though. So, the kind of "Foundation" I'm talking about is
different in that sense. And the funding foundation does not have to be
the same as the software's legal home, and may well not be for legal
reasons related to limited-liability (in case the software developers
get sued like over software patents or whatever).

Building the moral case for broad support for peer-to-peer

Peer-to-peer has been vilified in the mainstream supposedly because it
has been used to facilitate copyright infringement (or worse). In a way,
that is like vilifying automobiles because people can use them in bank
robberies as getaway cars. Peer-to-peer is at the heart of a democracy.
Such tools should be broadly supported for political and moral reasons.
The P2P Foundation (not a funding foundation) is an top of all that:

http://p2pfoundation.net/Main_Page

"The P2P Foundation is an international organization focused on
studying, researching, documenting and promoting peer to peer practices
in a very broad sense. This wiki is our knowledge commons. "

Michel Bauwens is another person to coordinate with on peer-to-peer
support, and may have other funding ideas for Thunderbird and beyond:

http://p2pfoundation.net/Michel_Bauwens/Full_Bio

Beyond the issue of "data smog", there has always been a big doubt in
the back of my mind about all of those centralized and proprietary
services for social media and communications like MySpace, Facebook,
gmail, Yahoo, LinkedIn, and now Slack, because they make it easy for
someone to aggregate a lot of data about a person and also on the
person's friends. For example, that's one reason I don't have a LinkedIn
account even though it hurts me professionally given the current
expectations these days. I consider something like LinkedIn to be
morally wrong in a sense -- although, I guess that might be silly given
Google or Duck Duck Go or whoever will still crawl email archives and
such and put together social networks, so obviously it is not black and
white. I refer to LinkedIn myself quite a bit -- although I would be
happier to find personal/professional websites. Maybe I'll cave someday
to peer pressure and get an account there, but that's how I feel about
giving a third-party all my professional (or personal) contacts.

I has been saddening to see the rise over the past fifteen years or so
of MySpace, Facebook, Yahoo mail, gmail, etc. versus personal websites
and desktop email clients. I still remember the web of 1997-2000, and it
was such a different place. It's also sad now to see Slack displacing
IRC and a whole lot more -- without any substantial discussion of what
it means for a company to put their entire corporate knowledge base
offsite in someone else's hands. Working on RSS feed reading, which I've
mostly ignored in the past when RSS was a big thing probably a decade or
so ago, really drives that point home, as I poked around to find some
contrasting RSS feeds, and yet also see stuff scrolling off of them
quickly, like the one for the Whitehouse press releases. These are
things to consider in creating a moral and political case for investing
in better communication tools like better email clients etc..

WordPress and related software like Drupal though has been a ray of
sunshine in all that (probably hosting more than 25% of websites
together), and is what a lot of people turn to as an alternative to
communicating through Facebook (or email). While it may make sense for a
lot of people to host at a locked-down WordPress.com, the fact that
there is an open-ended WordPress.org distribution that you can run
locally if you want makes all the difference -- especially that you can
fairly easily migrate from one to the other. So, even if the Thunderbird
project itself does not go in the direction of this proof-of-concept
Thunderbird Server experiment, I'm realizing such code could probably
run in front of WordPress or Drupal as well (in a "decoupled" way).
That's not my main expectation of how most users would deploy an
email-focused client locally (Node.js is easier to manage than the
current typical WordPress stack of Apache+MySQL) -- but considering
other web deployment options does suggest a way to leverage interest in
such a Thunderbird webapp project.

So, there is a need to find like-minded people, who care about such
issues, and ask them to put a lot of money into the peer-to-peer space,
of which Thunderbird is one example (perhaps the best) of software that
works well and has broad adoption by ten million users.

A TODO list for Mozilla that sadly may never get done

As I pointed out in my email on the Mozilla Governance list replying to
Mitchell Baker, there is a fundamental conflict of interest between
Firefox (funded by Google and then Yahoo and some others mostly because
it provides access to social media and related advertisements via the
search bar) and Thunderbird (which helps people avoid all that).

Mitchell Baker is obviously a persuasive person, and she is earning the
big bucks no doubt in part of that. Perhaps she could persuade some big
foundations (as in, US$ many billions of dollars assets) to put a lot of
money into open source software for democracy, rather than relying on a
funding approach that involves partnerships with proprietary messaging
companies? With money that was less conflicted, then maybe Thunderbird
would get a fairer share of it.

So, here is a TODO list for her of a total of around US$300 billion
dollars just sitting there in 35 foundations and waiting to be spent on
Thunderbird (and even Firefox) as a way to promote democracy: :-)
https://en.wikipedia.org/wiki/List_of_wealthiest_charitable_foundations

Of course, if she and Mark Surman are too busy to do that, then maybe
someone else could do that instead, like specifically for Thunderbird
and peer-to-peer? I'm too busy coding to do it myself right now (or
should be, back to it now), plus I would not have the credibility
various socially connected high-profile people like them have.

--Paul Fernhout

http://www.pdfernhout.net/

The biggest challenge of the 21st century is the irony of technologies
of abundance in the hands of those still thinking in terms of scarcity.

